




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
一、解答題1.如圖,在平面直角坐標系中,直線與x軸交于點,與y軸交于點,且(1)求;(2)若為直線上一點.①的面積不大于面積的,求P點橫坐標x的取值范圍;②請直接寫出用含x的式子表示y.(3)已知點,若的面積為6,請直接寫出m的值.解析:(1)4;(2)①或;②;(3)或.【分析】(1)先根據(jù)偶次方和絕對值的非負性求出的值,從而可得點的坐標和的長,再利用直角三角形的面積公式即可得;(2)①分和兩種情況,先分別求出和的面積,再根據(jù)已知條件建立不等式,解不等式即可得;②分和兩種情況,利用、和的面積關(guān)系建立等式,化簡即可得;(3)過點作軸的平行線,交直線于點,從而可得,再分、和三種情況,分別利用三角形的面積公式建立方程,解方程即可得.【詳解】解:(1)由題意得:,解得,,,軸軸,;(2)①的面積不大于面積的,的面積小于的面積,則分以下兩種情況:如圖,當時,則,,因此有,解得,此時的取值范圍為;如圖,當時,則,,因此有,解得,此時的取值范圍為,綜上,點橫坐標的取值范圍為或;②當時,則,,由(2)①可知,,則,即;如圖,當時,則,,,,,解得,綜上,;(3)過點作軸的平行線,交直線于點,由(2)②可知,,則,由題意,分以下三種情況:①如圖,當時,則,,解得,不符題設,舍去;②如圖,當時,則,,解得或(不符題設,舍去);③如圖,當時,則,,解得,符合題設,綜上,的值為或.【點睛】本題考查了偶次方和絕對值的非負性、坐標與圖形等知識點,較難的是題(3),正確分三種情況討論是解題關(guān)鍵.2.如圖,在平面直角坐標系中,四邊形各頂點的坐標分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點的對應點的坐標為.(1)請直接寫點、、的坐標;(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點,連接、,使,若存在這樣一點,求出點的坐標;若不存在,請說明理由.解析:(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點的坐標即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長為3,高為2,即可求出面積;(3)設點的坐標為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個單位,向上平移一個單位;∵,,,∴;(2)如圖,延長交x軸于點E,過點做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設點的坐標為,∵,,∴,∴點的坐標為或.【點睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進行解題.3.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負半軸上一點,且.(1)(),()(2)如圖2,設為線段上一動點,當時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當點在線段上運動時,作交于的平分線交于,當點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.解析:(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負數(shù)的和為零,各項分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標是(-2,0)、B的坐標是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點睛】本題考查了坐標與圖形性質(zhì):利用點的坐標計算出相應的線段的長和判斷線段與坐標軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).4.在平面直角坐標系中,已知線段,點的坐標為,點的坐標為,如圖1所示.(1)平移線段到線段,使點的對應點為,點的對應點為,若點的坐標為,求點的坐標;(2)平移線段到線段,使點在軸的正半軸上,點在第二象限內(nèi)(與對應,與對應),連接如圖2所示.若表示△BCD的面積),求點、的坐標;(3)在(2)的條件下,在軸上是否存在一點,使表示△PCD的面積)?若存在,求出點的坐標;若不存在,請說明理由.解析:(1);(2);(3)存在點,其坐標為或.【分析】(1)利用平移得性質(zhì)確定出平移得單位和方向;(2)根據(jù)平移得性質(zhì),設出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設出點P的坐標,表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對應點,∴設,∴即線段向左平移5個單位,再向上平移4個單位得到線段∴點平移后的對應點;(2)∵點C在軸上,點D在第二象限,∴線段向左平移3個單位,再向上平移個單位,∴連接,,∴∴;(3)存在設點,∴∵,∴∴,∴∴存在點,其坐標為或.【點睛】本題考查了線段平移的性質(zhì),解題的關(guān)鍵在利用平移的性質(zhì),得到點坐標的關(guān)系、圖形面積的關(guān)系,根據(jù)面積的關(guān)系,從而求出點的坐標.5.如圖,在平面直角坐標系中,已知△ABC,點A的坐標是(4,0),點B的坐標是(2,3),點C在x軸的負半軸上,且AC=6.(1)直接寫出點C的坐標.(2)在y軸上是否存在點P,使得S△POB=S△ABC若存在,求出點P的坐標;若不存在,請說明理由.(3)把點C往上平移3個單位得到點H,作射線CH,連接BH,點M在射線CH上運動(不與點C、H重合).試探究∠HBM,∠BMA,∠MAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.解析:(1)C(-2,0);(2)點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明見解析.【分析】(1)由點A坐標可得OA=4,再根據(jù)C點x軸負半軸上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根據(jù)S△POB=S△ABC,可得OP=6,即可寫出點P的坐標;(3)先得到點H的坐標,再結(jié)合點B的坐標可得到BH//AC,然后根據(jù)點M在射線CH上,分點M在線段CH上與不在線段CH上兩種情況分別進行討論即可得.【詳解】(1)∵A(4,0),∴OA=4,∵C點x軸負半軸上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=×6×3=9,S△BOP=OP×2=OP,又∵S△POB=S△ABC,∴OP=×9=6,∴點P坐標為(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,證明如下:∵把點C往上平移3個單位得到點H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如圖1,當點M在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如圖2,當點M在射線CH上但不在線段HC上時,過點M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;綜上,∠BMA=∠MAC±∠HBM.【點睛】本題考查了點的坐標,三角形的面積,點的平移,平行線的判定與性質(zhì)等知識,綜合性較強,正確進行分類并準確畫出圖形是解題的關(guān)鍵.6.如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面積為______;(2)如圖2,若AC⊥BC,點P線段OC上一點,連接BP,延長BP交AC于點Q,當∠CPQ=∠CQP時,求證:BP平分∠ABC;(3)如圖3,若AC⊥BC,點E是點A與點B之間一動點,連接CE,CB始終平分∠ECF,當點E在點A與點B之間運動時,的值是否變化?若不變,求出其值;若變化,請說明理由.解析:-3-46【解析】分析:(1)求出CD的長度,再根據(jù)三角形的面積公式列式計算即可得解;(2)根據(jù)等角的余角相等解答即可;(3)首先證明∠ACD=∠ACE,推出∠DCE=2∠ACD,再證明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解決問題;詳解:(1)解:如圖1中,∵|a+3|+(b-a+1)2=0,∴a=-3,b=4,∵點C(0,-3),D(-4,-3),∴CD=4,且CD∥x軸,∴△BCD的面積=1212×4×3=6;故答案為-3,-4,6.(2)證明:如圖2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)解:如圖3中,結(jié)論:=定值=2.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-3),D(-4,-3),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴=2.點睛:本題考查了坐標與圖形性質(zhì),三角形的角平分線,三角形的面積,三角形的內(nèi)角和定理,三角形的外角性質(zhì)等知識,熟記性質(zhì)并準確識圖是解題的關(guān)鍵.7.已知,AB∥DE,點C在AB上方,連接BC、CD.(1)如圖1,求證:∠BCD+∠CDE=∠ABC;(2)如圖2,過點C作CF⊥BC交ED的延長線于點F,探究∠ABC和∠F之間的數(shù)量關(guān)系;(3)如圖3,在(2)的條件下,∠CFD的平分線交CD于點G,連接GB并延長至點H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.解析:(1)證明見解析;(2);(3).【分析】(1)過點作,先根據(jù)平行線的性質(zhì)可得,再根據(jù)平行公理推論可得,然后根據(jù)平行線的性質(zhì)可得,由此即可得證;(2)過點作,同(1)的方法,先根據(jù)平行線的性質(zhì)得出,,從而可得,再根據(jù)垂直的定義可得,由此即可得出結(jié)論;(3)過點作,延長至點,先根據(jù)平行線的性質(zhì)可得,,從而可得,再根據(jù)角平分線的定義、結(jié)合(2)的結(jié)論可得,然后根據(jù)角的和差、對頂角相等可得,由此即可得出答案.【詳解】證明:(1)如圖,過點作,,,,,即,,;(2)如圖,過點作,,,,,即,,,,,;(3)如圖,過點作,延長至點,,,,,平分,平分,,由(2)可知,,,又,.【點睛】本題考查了平行線的性質(zhì)、對頂角相等、角平分線的定義等知識點,熟練掌握平行線的性質(zhì)是解題關(guān)鍵.8.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.解析:(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質(zhì)與判定,屬于基礎題,關(guān)鍵是過E點作AB(或CD)的平行線,把復雜的圖形化歸為基本圖形.9.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時針方向每秒3°旋轉(zhuǎn)至QD停止,此時射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時開始旋轉(zhuǎn),當旋轉(zhuǎn)時間10秒時,PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開始轉(zhuǎn)動,當射線PB旋轉(zhuǎn)的時間為多少秒時,PB′//QC′.解析:(1)PB′⊥QC′;(2)當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時,∠BPB′和∠CQC′的度數(shù),設PB′與QC′交于O,過O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進而得結(jié)論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時間.【詳解】解:(1)如圖1,當旋轉(zhuǎn)時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉(zhuǎn)的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運用方程思想解決幾何問題.10.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數(shù).解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.11.已知AB∥CD,∠ABE與∠CDE的角分線相交于點F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請直接寫出∠M與∠BED之間的數(shù)量關(guān)系解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個角的角平分線相交于點,,,,,,;(3)由(2)結(jié)論可得,,,則.【點睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補的性質(zhì).12.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結(jié)FA、FB,E是射線FA上的一點,若,,且,求n的值.解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質(zhì)及應用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進行求解是解答本題的關(guān)鍵.13.如圖1,點在直線、之間,且.(1)求證:;(2)若點是直線上的一點,且,平分交直線于點,若,求的度數(shù);(3)如圖3,點是直線、外一點,且滿足,,與交于點.已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).解析:(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯角相等,得出結(jié)合已知條件,得出即可證明;(2)過點E作HE∥CD,設由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過點N作NP∥CD,過點M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點E作HE∥CD,如圖,設由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點N作NP∥CD,過點M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點睛】本題考查平行線的性質(zhì),角平分線的定義,解決問題的關(guān)鍵是作平行線構(gòu)造相等的角,利用兩直線平行,內(nèi)錯角相等,同位角相等來計算和推導角之間的關(guān)系.14.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州醫(yī)科大學神奇民族醫(yī)藥學院《生物學創(chuàng)新創(chuàng)業(yè)課程》2024-2025學年第一學期期末試卷
- 南昌交通學院《老年口腔》2024-2025學年第一學期期末試卷
- 四川機電職業(yè)技術(shù)學院《機床電氣與PC技術(shù)》2024-2025學年第一學期期末試卷
- 河北資源環(huán)境職業(yè)技術(shù)學院《建筑模型設計》2024-2025學年第一學期期末試卷
- 遼寧金融職業(yè)學院《大數(shù)據(jù)與人工智能》2024-2025學年第一學期期末試卷
- 大理農(nóng)林職業(yè)技術(shù)學院《人權(quán)法學》2024-2025學年第一學期期末試卷
- 大連理工大學《建筑工程軟件應用》2024-2025學年第一學期期末試卷
- 晉中師范高等??茖W校《綠色建筑》2024-2025學年第一學期期末試卷
- 寧波財經(jīng)學院《運動能力康復方案設計》2024-2025學年第一學期期末試卷
- 江蘇師范大學科文學院《工程造價軟件應用》2024-2025學年第一學期期末試卷
- 咖啡相關(guān)知識培訓課件
- 新職工保密培訓課件
- aeo封條管理制度
- 核電經(jīng)驗反饋管理制度
- 2025-2030年中國滑雪板設備行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 安全三級教育試題及答案
- 人教版小升初語文試卷及答案【完整版】
- 2025《中華人民共和國監(jiān)察法實施條例》專題課件
- 2025山東藝術(shù)學院教師招聘考試試題
- g2蒸汽鍋爐證考試試題及答案
- 物聯(lián)網(wǎng)技術(shù)應用專業(yè)-工程制圖及CAD課程標準
評論
0/150
提交評論