




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
福建福州屏東中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,一扇窗戶打開后,用窗鉤AB可將其固定()A.三角形的穩(wěn)定性B.兩點之間線段最短C.四邊形的不穩(wěn)定性D.三角形兩邊之和大于第三邊2、如圖,E為線段BC上一點,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長度為()A.12 B.10 C.8 D.63、如圖,點、、、在同一條直線上,已知,,添加下列條件中的一個:①;②;③;④.其中不能確定的是()A.① B.② C.③ D.④4、已知:如圖,D、E分別在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,則∠BDC的度數(shù)是()A.95° B.90° C.85° D.80°5、以下列各組線段為邊,能組成三角形的是()A.3cm,3cm,6cm B.2cm,5cm,8cmC.25cm,24cm,7cm D.1cm,2cm,3cm6、如圖,在5×5的正方形網(wǎng)格中,△ABC的三個頂點都在格點上,則與△ABC有一條公共邊且全等(不與△ABC重合)的格點三角形(頂點都在格點上的三角形)共有()A.3個 B.4個 C.5個 D.6個7、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.58、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,79、如圖,D為∠BAC的外角平分線上一點,過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個10、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點P,點E、F分別在邊BC、AC上,且都不與點C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時,則△CEF的周長為_____.2、兩角和它們的夾邊分別相等的兩個三角形全等(可以簡寫成_____).3、如圖,中,,,是的中點,的取值范圍為________.4、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.5、如圖,兩根旗桿CA,DB相距20米,且CA⊥AB,DB⊥AB,某人從旗桿DB的底部B點沿BA走向旗桿CA底部A點.一段時間后到達點M,此時他分別仰望旗桿的頂點C和D,兩次視線的夾角∠CMD=90°,且CM=DM.已知旗桿BD的高為12米,該人的運動速度為每秒2米,則這個人從點B到點M所用時間是_____秒.6、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動木架,觀察圖②中的變動情況,說一說,其中所蘊含的數(shù)學(xué)原理是_____.7、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,己知DE=4,AD=6,則BE的長為___.8、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時,CQ的長為______.9、如圖,在△ABC中,點D,E,F(xiàn)分別為BC,AD,CE的中點,且S△BEF=2cm2,則S△ABC=__________.10、在平面直角坐標(biāo)系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當(dāng)OE最小時,點E的縱坐標(biāo)為______.三、解答題(6小題,每小題10分,共計60分)1、如圖,于于F,若,(1)求證:平分;(2)已知,求的長.2、已知,如圖,三角形ABC是等腰直角三角形,∠ACB=90°,F(xiàn)是AB的中點,直線l經(jīng)過點C,分別過點A、B作l的垂線,即AD⊥CE,BE⊥CE,(1)如圖1,當(dāng)CE位于點F的右側(cè)時,求證:△ADC≌△CEB;(2)如圖2,當(dāng)CE位于點F的左側(cè)時,求證:ED=BE﹣AD;(3)如圖3,當(dāng)CE在△ABC的外部時,試猜想ED、AD、BE之間的數(shù)量關(guān)系,并證明你的猜想.3、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長4、如圖,在長方形ABCD中,AD=3,DC=5,動點M從A點出發(fā)沿線段AD—DC以每秒1個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD—DA以每秒3個單位長度的速度向終點A運動.ME⊥PQ于點E,NF⊥PQ于點F,設(shè)運動的時間為秒.(1)在運動過程中當(dāng)M、N兩點相遇時,求t的值.(2)在整個運動過程中,求DM的長.(用含t的代數(shù)式表示)(3)當(dāng)DEM與DFN全等時,請直接寫出所有滿足條件的DN的長.5、已知的三邊長分別為a,b,c.若a,b,c滿足,試判斷的形狀.6、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.-參考答案-一、單選題1、A【分析】由三角形的穩(wěn)定性即可得出答案.【詳解】一扇窗戶打開后,用窗鉤AB可將其固定,故選:A.【點睛】本題考查了三角形的穩(wěn)定性,加上窗鉤AB構(gòu)成了△AOB,而三角形具有穩(wěn)定性是解題的關(guān)鍵.2、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長度,這是解決本題的主要思路.3、B【分析】由已知條件知可得:∠A=∠D,AB=DE,再結(jié)合全等三角形的判定定理進行解答即可.【詳解】解:已知條件知:∠A=∠D,AB=DEA、當(dāng)添加AC=DF時,根據(jù)SAS能判,故本選項不符合題意;B、當(dāng)添加BC=EF時則BC=EF,根據(jù)SSA不能判定,故本選項符合題意;C、當(dāng)添加時,根據(jù)ASA能判定,故本選項不符合題意;D、當(dāng)添加時,根據(jù)AAS能判定,故本選項不符合題意.故選:B.【點睛】本題主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成為解答本題的關(guān)鍵.4、C【分析】根據(jù)SAS證△ABE≌△ACD,推出∠C=∠B,求出∠C的度數(shù),根據(jù)三角形的外角性質(zhì)得出∠BDC=∠A+∠C,代入求出即可.【詳解】解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠C=∠B,∵∠B=25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故選C.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,三角形外角的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.5、C【分析】根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:A、∵,∴3cm,3cm,6cm不能組成三角形,故選項錯誤,不符合題意;B、∵,∴2cm,5cm,8cm不能組成三角形,故選項錯誤,不符合題意;C、∵,∴25cm,24cm,7cm能組成三角形,故選項正確,符合題意;D、∵,∴1cm,2cm,3cm不能組成三角形,故選項錯誤,不符合題意.故選:C.【點睛】此題考查了三角形三邊關(guān)系,解題的關(guān)鍵是熟練掌握三角形三邊關(guān)系.三角形兩邊之和大于第三邊,兩邊之差小于第三邊.6、C【分析】根據(jù)全等三角形的性質(zhì)及判定在圖中作出符合條件的三角形即可得出結(jié)果.【詳解】解:如圖所示:與BC邊重合且與全等的三角形有:,,,與AC邊重合且與全等的三角形有:,與AB邊重合且與全等的三角形有:,共有5個三角形,故選:C.【點睛】題目主要考查全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題關(guān)鍵.7、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點睛】本題考查的是三角形三邊的關(guān)系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關(guān)鍵.8、C【分析】根據(jù)組成三角形的三邊關(guān)系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項錯誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項錯誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項錯誤.故選:C.【點睛】本題考查了三角形的三邊關(guān)系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.9、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.10、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應(yīng)的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.二、填空題1、4【分析】根據(jù)題意過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ,進而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過點P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長為4,故答案為:4.【點睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問.2、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個三角形全等,簡寫成角邊角或ASA,故答案為:角邊角或ASA.【點睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.3、【分析】延長AD到E,使,連接,證,得到,在中,根據(jù)三角形三邊關(guān)系定理得出,代入求出即可.【詳解】解:延長AD到E,使,連接,如圖所示:∵AD是BC邊上的中線,∴,在和中,,∴,∴,在中,,∴,∴,故答案為:.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的三邊關(guān)系定理的應(yīng)用,熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.4、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當(dāng)BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當(dāng)BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.5、4【分析】先說明,再利用證明,然后根據(jù)全等三角形的性質(zhì)可得米,再根據(jù)線段的和差求得BM的長,最后利用時間=路程÷速度計算即可.【詳解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵該人的運動速度,他到達點M時,運動時間為s.故答案為:4.【點睛】本題主要考查了全等三角形的判定與性質(zhì),根據(jù)題意證得是解答本題的關(guān)鍵.6、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.7、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點睛】本題考查三角形全等的判定和性質(zhì),要根據(jù)AAS證明△ACD≌△CBE是解題的關(guān)鍵.8、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時;(2)當(dāng)P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當(dāng)P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.9、8cm2【分析】由于三角形的中線將三角形分成面積相等的兩部分,則S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E點為AD的中點得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【詳解】解:∵F點為CE的中點,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D點為BC的中點,∴S△BDE=S△BCE=2cm2,∵E點為AD的中點,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案為:8cm2.【點睛】本題考查了三角形的中線,根據(jù)三角形的中線等分三角形的面積是解本題的關(guān)鍵.10、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當(dāng)OE⊥CD時,OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當(dāng)OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標(biāo)為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點E運動的軌跡,確定點E的位置.三、解答題1、(1)證明見解析;(2)6【分析】(1)由題所給條件可得,即得ED=DF,則可得,則,故平分.(2)由(1)問所得條件,得AF=AE=8,則AB=8-2=6.【詳解】(1)∵于于F,∴(HL)∴ED=DF∵于于F,AD=AD∴(HL)∴故平分.(2)∵BE=CF∴AF=AC-BE=10-2=8∴AE=AF=8∴AB=AE-BE=8-2=6.【點睛】本題考查了直角三角形全等的判定,所應(yīng)用的定理為斜邊、直角邊定理:斜邊和一條直角邊分別相等的兩個直角三角形全等(簡寫成HL).2、(1)見解析;(2)見解析;(3)ED=AD+BE.證明見解析【分析】(1)利用同角的余角相等得出∠CAD=∠BCE,進而根據(jù)AAS證明△ADC≌△CEB;(2)根據(jù)AAS證明△ADC≌△CEB后,得其對應(yīng)邊相等,進而得到ED=BE-AD;(3)根據(jù)AAS證明△ADC≌△CEB后,得DC=BE,AD=CE,又有ED=CE+DC,進而得到ED=AD+BE.【詳解】(1)證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS);(2)證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CD-CE,∴ED=BE-AD;(3)ED=AD+BE.證明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC與△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CE+DC,∴ED=AD+BE.【點睛】本題考查了全等三角形的判定和性質(zhì);利用全等三角形的對應(yīng)邊相等進行等量交換,證明線段之間的數(shù)量關(guān)系,這是一種很重要的方法,注意掌握.3、第三邊長為7cm或9cm或11cm【分析】設(shè)三角形的第三邊長為xcm,根據(jù)三角形的三邊關(guān)系確定x的范圍,然后根據(jù)題意可求解.【詳解】解:設(shè)三角形的第三邊長為xcm,由三角形的兩邊長分別是4cm和9cm可得:,即為,∵第三邊長是奇數(shù),∴或9或11.【點睛】本題主
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基底節(jié)解剖課件
- 交互電視數(shù)據(jù)業(yè)務(wù)的演進與終端接收算法的創(chuàng)新研究
- 中國收入不平等倒U問題再審視:基于三種估計方法的實證探究
- RUNX3與小檗堿:胃癌治療的新曙光-基于基因調(diào)控與細(xì)胞增殖凋亡機制的探究
- 基層監(jiān)管所培訓(xùn)課件
- 基層應(yīng)急知識培訓(xùn)課件
- 新解讀《GB-T 34953.4-2020信息技術(shù) 安全技術(shù) 匿名實體鑒別 第4部分:基于弱秘密的機制》
- 培訓(xùn)課件準(zhǔn)備
- 家政按摩考試題及答案
- 合理碰撞測試題及答案
- 共青團中央所屬事業(yè)單位2024年度社會公開招聘筆試備考題庫參考答案詳解
- 2025年《分級護理制度》考試試題(及答案)
- 警衛(wèi)勤務(wù)基礎(chǔ)知識課件
- 2025年全國交管12123駕駛證學(xué)法減分(學(xué)法免分)考試題含參考答案
- 氣候變化與健康課件
- 公司電腦配備管理辦法
- 娛樂直播培訓(xùn)課件下載
- 居間報酬支付管理辦法
- 細(xì)胞生物學(xué)復(fù)習(xí)資料非常詳細(xì)
- 臨沂在編考試試題及答案
- 腎病血透護理小講課講課件
評論
0/150
提交評論