




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省侯馬市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形2、有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了上圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2020次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2021 C.2020 D.20193、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點(diǎn)F,設(shè)BC=a,AC=b,AB=c,則下列關(guān)系式中成立的是(
)A.a(chǎn)2+b2=5c2 B.a(chǎn)2+b2=4c2 C.a(chǎn)2+b2=3c2 D.a(chǎn)2+b2=2c24、在自習(xí)課上,小芳同學(xué)將一張長方形紙片ABCD按如圖所示的方式折疊起來,她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對角線AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm25、如圖,中,,一同學(xué)利用直尺和圓規(guī)完成如下操作:①以點(diǎn)C為圓心,以CB為半徑畫弧,交AB于點(diǎn)G;分別以點(diǎn)G、B為圓心,以大于的長為半徑畫弧,兩弧交點(diǎn)K,作射線CK;②以點(diǎn)B為圓心,以適當(dāng)?shù)拈L為半徑畫弧,交BC于點(diǎn)M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點(diǎn)P,作直線BP交AC的延長線于點(diǎn)D,交射線CK于點(diǎn)E.請你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點(diǎn)D作交AB的延長線于點(diǎn)F,若,,則CE的長為(
)A.13 B. C. D.6、△ABC的三邊長a,b,c滿足+(b﹣12)2+|c﹣13|=0,則△ABC的面積是(
)A.65 B.60 C.30 D.267、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)H的位置,折痕為EF,則△ABE的面積為(
)A.6cm2 B.8cm2 C.10cm2 D.12cm2第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、勘測隊按實(shí)際需要構(gòu)建了平面直角坐標(biāo)系,并標(biāo)示了A,B,C三地的坐標(biāo),數(shù)據(jù)如圖(單位:km).筆直鐵路經(jīng)過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.2、如圖,在中,,于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對稱點(diǎn)落在CD的延長線上.若,,則的面積為__________.3、如圖,在一次綜合實(shí)踐活動中,小明將一張邊長為的正方形紙片,沿著邊上一點(diǎn)與點(diǎn)的連線折疊,點(diǎn)是點(diǎn)的對應(yīng)點(diǎn),延長交于點(diǎn),經(jīng)測量,,則的面積為______.4、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.5、學(xué)習(xí)完《勾股定理》后,尹老師要求數(shù)學(xué)興趣小組的同學(xué)測量學(xué)校旗桿的高度.同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長度未知.如圖,經(jīng)測量,繩子多出的部分長度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.6、如圖,一個高,底面周長的圓柱形水塔,現(xiàn)制造一個螺旋形登梯,為了減小坡度,要求登梯繞塔環(huán)繞一周半到達(dá)頂端,問登梯至少為___________長.7、如圖1,鄰邊長為2和6的矩形分割成①,②,③,④四塊后,拼接成如圖2不重疊、無縫隙的正方形,則圖2中的值為___________,圖1中的長為_______.8、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個動點(diǎn),△AD'E與△ADE關(guān)于直線AE對稱,當(dāng)△CD'E為直角三角形時,DE的長為__.三、解答題(7小題,每小題10分,共計70分)1、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時施工,過點(diǎn)B作一直線m(在山的旁邊經(jīng)過),過點(diǎn)C作一直線l與m相交于D點(diǎn),經(jīng)測量,,米,米.若施工隊每天挖100米,求施工隊幾天能挖完?2、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點(diǎn)不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點(diǎn)B的仰角為30°,在E處測得標(biāo)語牌頂部點(diǎn)A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點(diǎn)A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))3、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.4、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點(diǎn),且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.5、如圖,在四邊形中,,,于,(1)求證:;(2)若,,求四邊形的面積.6、如圖,CE⊥AB于點(diǎn)E,BD⊥AC于點(diǎn)D,AB=AC.(1)求證:△ABD≌△ACE.(2)連接BC,若AD=6,CD=4,求△ABC的面積.7、已知:在中,點(diǎn)在直線上,點(diǎn)在同一條直線上,且,【問題初探】(1)如圖1,若平分,求證:.請依據(jù)以下的簡易思維框圖,寫出完整的證明過程.【變式再探】(2)如圖2,若平分的外角,交的延長線于點(diǎn),問:和的數(shù)量關(guān)系發(fā)生改變了嗎?若改變,請寫出正確的結(jié)論,并證明;若不改變,請說明理由.【拓展運(yùn)用】(3)如圖3,在的條件下.若,求的長度.-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項正確;故選:B.【考點(diǎn)】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.2、B【解析】【分析】根據(jù)勾股定理求出“生長”了1次后形成的圖形中所有的正方形的面積和,結(jié)合圖形總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:由題意得,正方形A的面積為1,由勾股定理得,正方形B的面積+正方形C的面積=1,∴“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得,“生長”了2次后形成的圖形中所有的正方形的面積和為3,∴“生長”了3次后形成的圖形中所有的正方形的面積和為4,……∴“生長”了2020次后形成的圖形中所有的正方形的面積和為2021,故選:B.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.3、A【解析】【詳解】設(shè)EF=x,DF=y(tǒng),根據(jù)三角形重心的性質(zhì)得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關(guān)系.【解答】解:設(shè)EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點(diǎn)F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點(diǎn)評】本題考查了三角形的重心:重心到頂點(diǎn)的距離與重心到對邊中點(diǎn)的距離之比為2:1.也考查了勾股定理.4、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點(diǎn)】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識,是重要考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.5、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識,解題的關(guān)鍵是學(xué)會構(gòu)建方程解決問題,屬于中考常考題型.6、C【解析】【分析】首先根據(jù)非負(fù)數(shù)的性質(zhì)可得a-5=0,b-12=0,c-13=0,進(jìn)而可得a、b、c的值,再利用勾股定理逆定理證明△ABC是直角三角形,最后由直角三角形面積公式求解即可.【詳解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故選:C.【考點(diǎn)】此題主要考查了非負(fù)數(shù)的性質(zhì),以及勾股定理逆定理,熟練掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形,利用非負(fù)數(shù)性質(zhì)求出a、b、c的值是解題的關(guān)鍵.7、A【解析】【分析】根據(jù)折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點(diǎn)與點(diǎn)重合,,,根據(jù)勾股定理得:,解得:..故選:A.【考點(diǎn)】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.二、填空題1、
20
13【解析】【分析】(1)由垂線段最短以及根據(jù)兩點(diǎn)的縱坐標(biāo)相同即可求出AB的長度;(2)根據(jù)A、B、C三點(diǎn)的坐標(biāo)可求出CE與AE的長度,設(shè)CD=x,根據(jù)勾股定理即可求出x的值.【詳解】(1)由A、B兩點(diǎn)的縱坐標(biāo)相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點(diǎn)C作l⊥AB于點(diǎn)E,連接AC,作AC的垂直平分線交直線l于點(diǎn)D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設(shè)CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點(diǎn)】本題考查了勾股定理,解題的關(guān)鍵是根據(jù)A、B、C三點(diǎn)的坐標(biāo)求出相關(guān)線段的長度,本題屬于中等題型.2、【解析】【分析】在△ABC中由等面積求出,進(jìn)而得到,設(shè)BE=x,進(jìn)而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設(shè)BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點(diǎn)】本題考查了勾股定理求線段長、折疊的性質(zhì)等,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練使用勾股定理求線段長.3、##【解析】【分析】根據(jù)題意,,進(jìn)而求得,勾股定理求得,即可求得的面積.【詳解】解:折疊,,,,∵四邊形是正方形∴中..故答案為:【考點(diǎn)】本題考查了折疊的性質(zhì),勾股定理,掌握勾股定理是解題的關(guān)鍵.4、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進(jìn)而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問題時,勾股定理與方程的結(jié)合是解決實(shí)際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.5、7.5;【解析】【分析】旗桿、拉直的繩子與地面構(gòu)成直角三角形,根據(jù)題中數(shù)據(jù),用勾股定理即可解答.【詳解】解:如圖,設(shè)旗桿的長度為xm,則繩子的長度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,根據(jù)題意得出直角三角形是解答此題的關(guān)鍵.6、20m.【解析】【分析】試題分析:要求登梯的長,需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長時,借助于勾股定理.【詳解】將圓柱表面按一周半開展開呈長方形,
∵圓柱高16m,底面周長8m,設(shè)螺旋形登梯長為xm,∴x2=(1×8+4)2+162=400,∴登梯至少=20m故答案為:20m【考點(diǎn)】本題考查圓柱形側(cè)面展開圖新問題,涉及勾股定理,掌握按要求將圓柱側(cè)面展開圖形的方法,會利用圓周,高與對角線組成直角三角形,用勾股定理解決問題是關(guān)鍵.7、
【解析】【分析】由等積法解得正方形的邊長,再利用勾股定理解得圖④的直角邊FH的長,在圖2中,利用正弦的定義解得,接著利用勾股定理解得,據(jù)此解得的值,最后利用解答即可.【詳解】解:矩形的面積為:2×6=12正方形的邊長如圖1,如圖2,設(shè)或(舍去)故答案為:,.【考點(diǎn)】本題考查正方形與矩形、圖形的拼接,涉及勾股定理、正弦、余弦等知識,是重要考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.8、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時,如圖(1),根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計算即可.【詳解】解:當(dāng)∠CED′=90°時,如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時,如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.三、解答題1、施工隊6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解:∵,∴,∵米,米,∴(米)故(天)答:施工隊6天能挖完.【考點(diǎn)】本題考查外角的性質(zhì),勾股定理的應(yīng)用,解題的關(guān)鍵是利用勾股定理求得∠BCD=90°.2、,不符合規(guī)定【解析】【分析】根據(jù)勾股定理即可求解.【詳解】解:設(shè)且解得:商家這樣放廣告牌不符合規(guī)定.【考點(diǎn)】本題考查了勾股定理、一元一方程等內(nèi)容,解決問題的關(guān)鍵在于理解題意,找到等量關(guān)系,列出方程.3、△ABC為直角三角形或等腰三角形【解析】【分析】首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形.4、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周長為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長,周長即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公共衛(wèi)生繼續(xù)教育題庫及答案
- 高警示藥品分級管理制度試題及答案
- 云南省保山市第一中學(xué)2026屆高三化學(xué)第一學(xué)期期中達(dá)標(biāo)測試試題含解析
- 2026屆河南省八市重點(diǎn)高中聯(lián)盟化學(xué)高一第一學(xué)期期末檢測模擬試題含解析
- 2025年原油加工量合作協(xié)議書
- 2026屆河南省長葛市一中化學(xué)高一上期末綜合測試模擬試題含解析
- 2025年差壓變送器項目合作計劃書
- 供應(yīng)室質(zhì)量追溯制度課件
- 2026屆湖北省昆明市黃岡實(shí)驗學(xué)?;瘜W(xué)高一上期中學(xué)業(yè)水平測試模擬試題含解析
- 供應(yīng)室消毒知識培訓(xùn)課件
- 2025年新高考1卷(新課標(biāo)Ⅰ卷)英語試卷
- 2025年網(wǎng)絡(luò)安全與信息化考試試題及答案
- 《基于單元的高中英語項目式學(xué)習(xí)設(shè)計研究》
- 應(yīng)急救援互助合同協(xié)議書
- 2025年北京市海淀區(qū)高三二模英語試卷(含答案)
- 醫(yī)院改建可行性研究報告
- 2025保定市淶水縣淶水鎮(zhèn)社區(qū)工作者考試真題
- 2025-2030中國芽孢桿菌行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 小學(xué)語文新課標(biāo)跨學(xué)科學(xué)習(xí)任務(wù)群解讀及教學(xué)建議
- 護(hù)士執(zhí)業(yè)資格考試知識點(diǎn)大全2025
- 工廠合伙退股協(xié)議書模板
評論
0/150
提交評論