廣東省羅定市中考數(shù)學真題分類(勾股定理)匯編難點解析試題(含答案解析)_第1頁
廣東省羅定市中考數(shù)學真題分類(勾股定理)匯編難點解析試題(含答案解析)_第2頁
廣東省羅定市中考數(shù)學真題分類(勾股定理)匯編難點解析試題(含答案解析)_第3頁
廣東省羅定市中考數(shù)學真題分類(勾股定理)匯編難點解析試題(含答案解析)_第4頁
廣東省羅定市中考數(shù)學真題分類(勾股定理)匯編難點解析試題(含答案解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省羅定市中考數(shù)學真題分類(勾股定理)匯編難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,矩形中,的平分線交于點E,,垂足為F,連接.下列結論:①;②;③;④;⑤若,則.其中正確的結論有(

)A.2個 B.3個 C.4個 D.5個2、下列各組數(shù)據(jù)為三角形的三邊,能構成直角三角形的是(

)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,53、在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別是1,2,3,正放置的四個正方形的面積依次是S1,S2,S3,S4,則S1+S2+S3+S4=()A.4 B.5 C.6 D.74、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點,A點有一只螞蟻,想到B點去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(

)A.6 B.8 C.9 D.155、如圖,三角形紙片ABC,點D是BC邊上一點,連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點G,連接BE交AD于點F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點F到BC的距離為()A. B. C. D.6、如圖,△ABC中,,以其三邊分別向外側作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(

)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積7、我國古代數(shù)學著作《九章算術》中有這樣一個問題:

“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.水深、葭長各幾何?”.其大意是:如圖,有一個水池,水面是一個邊長為10尺(丈、尺是長度單位,1丈=10尺)的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?若設這跟蘆葦?shù)拈L度為x尺,根據(jù)題意,所列方程正確的是(

)A.102+(x-1)2=x2 B.102+(x-1)2=(x+1)2C.52+(x-1)2=x2 D.52+(x-1)2=(x+1)2第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點C到AB的距離是_______.2、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”,當,時,陰影部分的面積為________.3、設,是直角三角形的兩條直角邊長,若該三角形的周長為24,斜邊長為10,則的值為________.4、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.5、如圖,在中,,于點D.E為線段BD上一點,連結CE,將邊BC沿CE折疊,使點B的對稱點落在CD的延長線上.若,,則的面積為__________.6、圖,在菱形ABCD中,,是銳角,于點E,M是AB的中點,連接MD,若,則的值為______.7、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是.8、在△ABC中,AD是BC邊上的中線,AD⊥AB,如果AC=5,AD=2,那么AB的長是________.三、解答題(7小題,每小題10分,共計70分)1、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學家趙爽在為《周髀算經(jīng)》作注時給出的,它標志著中國古代的數(shù)學成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運用此圖形證明勾股定理:a2+b2=c2.2、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關系,并證明你的結論.3、如圖所示的一塊地,,,,,,求這塊地的面積.4、在邊長為8的等邊ABC中,點D是邊AB上的一動點,點E在邊AC上,且CE=2AD,射線DE繞點D順時針旋轉60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數(shù);②取邊BC的中點M,當PM取最小值時,求AD的長.5、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.6、如圖,將一個長方形紙片ABCD沿對角線AC折疊,點B落在點E處,AE交DC于點F,已知AB=4,BC=2,求折疊后重合部分的面積.7、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點B的仰角為30°,在E處測得標語牌頂部點A的仰角為45°,,請計算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點A,B,C,D,E,F(xiàn),G,H在同一平面內)-參考答案-一、單選題1、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過點F作FG⊥BC于點G,可得,從而得到,進而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過點F作FG⊥BC于點G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個.故選:D【考點】本題主要考查了矩形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,勾股定理等知識,熟練掌握相關知識點是解題的關鍵.2、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進行判斷.【詳解】A、42+72≠82,故不能構成直角三角形;B、22+22≠22,故不能構成直角三角形;C、2+2=4,故不能構成三角形,不能構成直角三角形;D、52+122=132,故能構成直角三角形,故選D.【考點】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.3、A【解析】【詳解】解:由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.【考點】勾股定理包含幾何與數(shù)論兩個方面,幾何方面,一個直角三角形的斜邊的平方等于另外兩邊的平方和.這里,邊的平方的幾何意義就是以該邊為邊的正方形的面積.4、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點到A點的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因為AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點】本題考查了勾股定理的應用,掌握勾股定理的應用并能得出平面展開圖是解題的關鍵.5、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設點F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設點F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點F到BC的距離為.故選:C【考點】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數(shù)構建方程解決問題.6、D【解析】【分析】如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點】本題主要考查了全等三角形的性質與判定,解題的關鍵在于能夠正確作出輔助線,構造全等三角形.7、C【解析】【分析】設這跟蘆葦?shù)拈L度為x尺,根據(jù)勾股定理,即可求解.【詳解】解:設這跟蘆葦?shù)拈L度為x尺,根據(jù)題意得:52+(x-1)2=x2故選:C【考點】本題主要考查了勾股定理的應用,明確題意,準確構造直角三角形是解題的關鍵.二、填空題1、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關鍵2、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點】本題考查的是勾股定理、半圓面積計算,掌握勾股定理和半圓面積公式是解題的關鍵.3、48【解析】【分析】由該三角形的周長為24,斜邊長為10可知a+b+10=24,再根據(jù)勾股定理和完全平方公式即可求出ab的值.【詳解】解:∵三角形的周長為24,斜邊長為10,∴a+b+10=24,∴a+b=14,∵a、b是直角三角形的兩條直角邊,∴a2+b2=102,則a2+b2=(a+b)2?2ab=102,即142?2ab=102,∴ab=48.故答案為:48.【考點】本題主要考查了勾股定理,掌握利用勾股定理證明線段的平方關系及完全平方公式的變形求值是解題的關鍵.4、.【解析】【分析】如圖,先利用等腰直角三角形的性質求出,,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.5、【解析】【分析】在△ABC中由等面積求出,進而得到,設BE=x,進而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【詳解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,設BE=x,由折疊可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入數(shù)據(jù):∴,解得,∴,∴,故答案為:.【考點】本題考查了勾股定理求線段長、折疊的性質等,解題的關鍵是掌握折疊的性質,熟練使用勾股定理求線段長.6、【解析】【分析】延長DM交CB的延長線于點首先證明,設,利用勾股定理構建方程求出x即可解決問題.【詳解】延長DM交CB的延長線于點H,四邊形ABCD是菱形,,,,,,≌,,,,設,,,,,,或舍棄,,故答案為.【考點】本題考查了菱形的性質、勾股定理、線段的垂直平分線的性質、全等三角形的判定和性質等知識,正確添加輔助線,構造全等三角形解決問題是解決本題的關鍵.7、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點C落在AB邊的C′點,∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點:折疊的性質,勾股定理點評:折疊的性質:折疊前后兩圖形全等,即對應角相等,對應線段相等,對應點的連線段被折痕垂直平分.8、3【解析】【分析】過點C作CE∥AB交AD延長線于E,先證△ABD≌△ECD(AAS),求出AE=2AD=4,在Rt△AEC中,即可.【詳解】解:過點C作CE∥AB交AD延長線于E,∵AD是BC邊上的中線,∴BD=CD,∵AD⊥AB,CE∥AB,∴AD⊥CE,∠ABD=∠ECD,∴∠E=90°,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴AB=EC,AD=ED=2,∴AE=2AD=4,在Rt△AEC中,,∴AB=CE=3.故答案為:3.【考點】本題考查中線性質,平行線性質,三角形全等判定與性質,勾股定理,掌握中線性質,平行線性質,三角形全等判定與性質,勾股定理,關鍵是利用輔助線構造三角形全等.三、解答題1、見解析【解析】【分析】根據(jù)大正方形的面積=小正方形的面積+4個直角三角形的面積證明即可【詳解】解:由題意得大正方形面積,小正方形面積,4個小直角三角形的面積,∵大正方形的面積=小正方形的面積+4個直角三角形的面積,∴.【考點】本題主要考查了勾股定理的證明,解題的關鍵在于能夠根據(jù)題意知曉大正方形的面積=小正方形的面積+4個直角三角形的面積.2、(1)BD=1m;(2)CE與BE的大小關系是CE=BE,證明見解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點,∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點】本題考查了勾股定理,等腰三角形的性質和判定,全等三角形的判定與性質等,能靈活運用勾股定理進行計算是解(1)的關鍵,能求出∠DCO=∠ABO和OC=OB是解(2)的關鍵.3、384【解析】【分析】連接,勾股定理求得,勾股定理的逆定理證明為直角三角形,進而根據(jù)三角形的面積公式計算和的面積之差即可.【詳解】解:連接,在直角中,,,由,解得,在中,,,,∵,∴,∴為直角三角形,要求這塊地的面積,求和的面積之差即可,,答:這塊地的面積為.【考點】本題考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解題的關鍵.4、(1)見解析;(2)①30°;②2【解析】【分析】(1)根據(jù)等邊三角形的性質求解即可;(2)①方法一:連接EP,過點P作GQ∥BC分別交AB,AC于點G,Q,易知△AGQ和△DEP均為等邊三角形,得到△ADE≌△GPD≌△QEP(AAS),即可得解;方法二:在DB上取DG=AE,證明△ADE≌△GPD(SAS),即可得解;②在DB上取DG=AE,當時,PM取得最小值,得到PM=2,PB=2,過點G作GH⊥BP于點H,利用直角三角形的性質求解即可;【詳解】解:(1)在等邊△ABC中,∵AB=AC,∠A=∠ABC=∠C=60°,∵∠EDF=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF;(2)①方法一:如答題圖1,連接EP,過點P作GQ∥BC分別交AB,AC于點G,Q,易知△AGQ和△DEP均為等邊三角形,∴BG=CQ,∠AGQ=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF,同理∠BDF=∠EPQ,∴可證:△ADE≌△GPD≌△QEP(AAS),∴AD=GP=QE,∵CE=2AD=CQ+EQ=AD+BG,∴PG=BG,∴∠DBP=∠BPG=30°;方法二:如答題圖2,在DB上取DG=AE,∵∠AED=∠BDF又∵DP=DE,∴△ADE≌△GPD(SAS),∴PG=AD,∠PGD=60°,∵CE=AC-AE=AB-DG=AD+BG=2AD,∴BG=AD=PG,∴∠DBP=∠BPG=30°;②如答圖3,在DB上取DG=AE,由①可知∠MBP=30°,AD=BG=PG;當時,PM取得最小值;在Rt△BMP中,∠MBP=30°,BM=4,∴PM=2,PB=2;過點G作GH⊥BP于點H,∵BG=PG,∴BH=;在Rt△BGH中,∠GB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論