




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省高平市中考數(shù)學考試黑鉆押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉90°,得到,則點的坐標為(
).A. B.C. D.2、設方程的兩根分別是,則的值為(
)A.3 B. C. D.3、如圖,點O是△ABC的內心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°4、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(
)A. B. C. D.5、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下列命題中,不正確的是(
)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內部或外部2、關于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當c=0時,函數(shù)的圖象經過原點;B.當c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標是;D.當b=0時,函數(shù)的圖象關于y軸對稱.3、若關于的一元二次方程的兩個實數(shù)根分別是,且滿足,則的值不可能為(
)A.或 B. C. D.不存在4、已知,⊙的半徑為5,,某條經過點的弦的長度為整數(shù),則該弦的長度可能為(
)A.4 B.6 C.8 D.105、已知關于的方程,下列說法不正確的是(
)A.當時,方程無解 B.當時,方程有兩個相等的實數(shù)根C.當時,方程有兩個相等的實數(shù)根 D.當時,方程有兩個不相等的實數(shù)根第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,已知P是函數(shù)y1圖象上的動點,當點P在x軸上方時,作PH⊥x軸于點H,連接PO.小華用幾何畫板軟件對PO,PH的數(shù)量關系進行了探討,發(fā)現(xiàn)PO﹣PH是個定值,則這個定值為_____.2、關于的一元二次方程的一個根是2,則另一個根是__________.3、小亮同學在探究一元二次方程的近似解時,填好了下面的表格:根據(jù)以上信息請你確定方程的一個解的范圍是________.4、如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連接BD,則對角線BD的最小值為_____.5、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.四、解答題(6小題,每小題10分,共計60分)1、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結,在第一象限內的拋物線上,是否存在一點,使的面積最大?最大面積是多少?2、如圖,⊙O的半徑弦AB于點C,連結AO并延長交⊙O于點E,連結EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.3、一個二次函數(shù)y=(k﹣1).求k值.4、某水果店標價為10元/kg的某種水果經過兩次降價后價格為8.1元/kg,并且兩次降價的百分率相同.時間/天x銷量/kg120-x儲藏和損耗費用/元3x2-64x+400(1)求該水果每次降價的百分率;(2)從第二次降價的第1天算起,第x天(x為整數(shù))的銷量及儲藏和損耗費用的相關信息如下表所示,已知該水果的進價為4.1元/kg,設銷售該水果第x天(1≤x<10)的利潤為377元,求x的值.5、如圖,AB是的直徑,弦于點E.若,,求弦CD.6、解關于y的方程:by2﹣1=y(tǒng)2+2.-參考答案-一、單選題1、A【解析】【分析】根據(jù)網格結構作出旋轉后的圖形,然后根據(jù)平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網格結構,作出圖形是解題的關鍵.2、A【解析】【分析】本題可利用韋達定理,求出該一元二次方程的二次項系數(shù)以及一次項系數(shù)的值,代入公式求解即可.【詳解】由可知,其二次項系數(shù),一次項系數(shù),由韋達定理:,故選:A.【考點】本題考查一元二次方程根與系數(shù)的關系,求解時可利用常規(guī)思路求解一元二次方程,也可以通過韋達定理提升解題效率.3、B【解析】【分析】利用內心的性質得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內角和計算出∠OBC+∠OCB=55°,然后再利用三角形內角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內切圓與內心:三角形的內心到三角形三邊的距離相等;三角形的內心與三角形頂點的連線平分這個內角.4、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關鍵.5、C【解析】【分析】根據(jù)切線的性質,連接過切點的半徑,構造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質和正方形的判定、性質,解題關鍵是理解和掌握切線的性質.二、多選題1、ABD【解析】【分析】根據(jù)圓的性質定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關鍵.2、ABD【解析】【分析】根據(jù)c與0的關系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當c=0時,函數(shù)的圖象經過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當a<0時,函數(shù)圖象最高點的縱坐標是;當a>0時,函數(shù)圖象最低點的縱坐標是;由于a值不定,故無法判斷最高點或最低點;D.當b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當b=0時,函數(shù)的圖象關于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當a<0時,函數(shù)的最大值是;當a>0時,函數(shù)的最小值是是解題關鍵.3、ABD【解析】【分析】利用可得,從而得到,解出k結合根的判別式即可求解.【詳解】解:∵于的一元二次方程的兩個實數(shù)根分別是,,∴,∵,∴,即,解得:,當時,,∴此時方程無實數(shù)根,不合題意,舍去,當時,,∴此時方程有兩個不相等實數(shù)根,∴的值為.故選:ABD.【考點】本題主要考查了一元二次方程根與系數(shù)的關系,熟練掌握若一元二次方程的兩個實數(shù)根分別是,,則是解題的關鍵.4、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點長度為整數(shù)的弦有4條,①過P點最短的弦的長度是8,②過P點最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關鍵.5、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.三、填空題1、2【解析】【分析】設p(x,x2-1),則OH=|x|,PH=|x2-1|,因點P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設p(x,x2-1),則OH=|x|,PH=|x2-1|,當點P在x軸上方時,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點】本題考查二次函數(shù)圖象上點的坐標特征,勾股定理,利用坐標求線段長度是解題的關鍵.2、-3【解析】【分析】由題意可把x=2代入一元二次方程進行求解a的值,然后再進行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關鍵.3、【解析】【分析】觀察表格可知,隨x的值逐漸增大,ax2+bx+c的值在3.24~3.25之間由負到正,故可判斷ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.【詳解】根據(jù)表格可知,ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.故答案為3.24<x<3.25.【考點】本題考查了一元二次方程的知識點,解題的關鍵是根據(jù)表格求出一元二次方程的近似根.4、1【解析】【分析】由矩形的性質可知BD=AC,再結合頂點到x軸的距離最近可知當點A在頂點處時滿足條件,求得拋物線的頂點坐標即可求得答案.【詳解】解:∵AC⊥x軸,∴當點A為拋物線頂點時,AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點坐標為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點】本題主要考查了二次函數(shù)的性質及矩形的性質,確定出AC最小時的位置是解題的關鍵.5、2【解析】【分析】首先求出的頂點坐標和與x軸兩個交點坐標,然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標為∵當時,即,解得:,∴拋物線與x軸兩個交點坐標為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數(shù)與x軸的交點問題,等腰直角三角形的性質,解題的關鍵是求出的頂點坐標和與x軸兩個交點坐標.四、解答題1、(1);(2)存在,當時,面積最大為16,此時點點坐標為.【解析】【分析】(1)用待定系數(shù)法解答便可;(2)設點的坐標為,連結、、.根據(jù)對稱性求出點B的坐標,根據(jù)得到二次函數(shù)關系式,最后配方求解即可.【詳解】解:(1)∵拋物線過點,∴.∵拋物線的對稱軸為直線,∴可設拋物線為.∵拋物線過點,∴,解得.∴拋物線的解析式為,即.(2)存在,設點的坐標為,連結、、.∵點A、關于直線對稱,且∴.∴.∵∴當時,面積最大為16,此時點點坐標為.【考點】本題主要考查了二次函數(shù)的圖象與性質,待定系數(shù)法,三角形面積公式以及二次函數(shù)的最值求法,根據(jù)圖形得出由此得出二次函數(shù)關系式是解答此題的關鍵.2、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關鍵.3、k=2【解析】【分析】根據(jù)二次函數(shù)的定義:一般地,形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù)可得k2-3k+4=2,且k-1≠0,再解即可.【詳解】由題意得:k2﹣3k+4=2,且k﹣1≠0,解得:k=2;【考點】此題主要考查了二次函數(shù)定義,關鍵是掌握判斷函數(shù)是否是二次函數(shù),要抓住
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療領域中教育技術的應用案例
- 蘇教版六年級數(shù)學下冊第4單元比例第4課時解比例課件
- 2026屆湖南省武岡市化學高一上期中教學質量檢測模擬試題含解析
- 中小學《五項管理》實施方案工作方案
- 斑疹熱動物宿主感染機制
- 團考試題庫及答案解析
- 【高三】【數(shù)學】2025【秋】開學第一課:為夢想飛翔(課件)
- C語言程序設計 課件 任務 5 學生成績管理系統(tǒng)之系統(tǒng)功能設計
- 基于現(xiàn)代玉米育種效率提升的關鍵技術策略分析
- 成都慶元小鎮(zhèn)工業(yè)園配套生活區(qū)開發(fā)策劃59p
- 左手流程-右手人才-章義伍
- 中藥煎煮與服用方法
- 黃岡市臨床重點專科申報-模板-副本
- GB/T 9124.1-2019鋼制管法蘭第1部分:PN系列
- GB/T 8685-2008紡織品維護標簽規(guī)范符號法
- GB/T 6433-2006飼料中粗脂肪的測定
- 2023年黔西縣(中小學、幼兒園)教師招聘考試《教育綜合知識》題庫及答案解析
- GB/T 20145-2006燈和燈系統(tǒng)的光生物安全性
- 弱電施工安全技術交底
- 斷親協(xié)議書范本
- 教師資格證面試真題《蜘蛛開店》試講模板答案試講稿逐字稿及答辯
評論
0/150
提交評論