廣東廣州市廣大附中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)項(xiàng)攻克試題_第1頁(yè)
廣東廣州市廣大附中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)項(xiàng)攻克試題_第2頁(yè)
廣東廣州市廣大附中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)項(xiàng)攻克試題_第3頁(yè)
廣東廣州市廣大附中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)項(xiàng)攻克試題_第4頁(yè)
廣東廣州市廣大附中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)項(xiàng)攻克試題_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東廣州市廣大附中7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)項(xiàng)攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、下列三角形與下圖全等的三角形是()A. B.C. D.2、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D3、下列四個(gè)圖形中,BE不是△ABC的高線的圖是()A. B.C. D.4、如圖,△ABC中,D,E分別為BC,AD的中點(diǎn),若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.85、如圖,圖形中的的值是()A.50 B.60 C.70 D.806、已知三角形的兩邊長(zhǎng)分別為2cm和3cm,則第三邊長(zhǎng)可能是()A.6cm B.5cm C.3cm D.1cm7、以下列各組線段為邊,能組成三角形的是()A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm8、有一個(gè)三角形的兩邊長(zhǎng)分別為2和5,則第三邊的長(zhǎng)可能是()A.2 B.2.5 C.3 D.59、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則的面積是()A. B.1 C.5 D.10、如圖,為了估計(jì)一池塘岸邊兩點(diǎn)A,B之間的距離,小穎同學(xué)在池塘一側(cè)選取了一點(diǎn)P,測(cè)得,那么點(diǎn)A與點(diǎn)B之間的距離不可能是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、一個(gè)零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個(gè)零件是否合格,只要檢驗(yàn)∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個(gè)零件______(填“合格”不合格”).2、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.3、在平面直角坐標(biāo)系中,點(diǎn)B(0,4),點(diǎn)A為x軸上一動(dòng)點(diǎn),連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時(shí)針?lè)较蚺帕?,且∠BAE為直角),連接OE.當(dāng)OE最小時(shí),點(diǎn)E的縱坐標(biāo)為_(kāi)_____.4、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).5、如圖,線段AC與BD相交于點(diǎn)O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個(gè)條件是____________.(只需填一個(gè)條件即可)6、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號(hào))7、如圖,在中,,點(diǎn)D,E在邊BC上,,若,,則CE的長(zhǎng)為_(kāi)_____.8、如圖,△ABC≌△DEF,BE=a,BF=b,則CF=___.9、如圖,直線ED把分成一個(gè)和四邊形BDEC,的周長(zhǎng)一定大于四邊形BDEC的周長(zhǎng),依據(jù)的原理是____________________________________.10、如圖,三角形ABC的面積為1,,E為AC的中點(diǎn),AD與BE相交于P,那么四邊形PDCE的面積為_(kāi)_____.三、解答題(6小題,每小題10分,共計(jì)60分)1、人教版初中數(shù)學(xué)教科書(shū)八年級(jí)上冊(cè)第36、37頁(yè)告訴我們作一個(gè)角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作圖:(1)以O(shè)為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交OA、OB于點(diǎn)C、D;(2)畫(huà)一條射線O′A′,以點(diǎn)O′為圓心,OC長(zhǎng)為半徑畫(huà)弧,交O′A′于點(diǎn)C′;(3)以點(diǎn)C′為圓心,CD長(zhǎng)為半徑畫(huà)弧,與第2步中所畫(huà)的弧相交于點(diǎn)D′;(4)過(guò)點(diǎn)D′畫(huà)射線O′B′,則∠A′O′B′=∠AOB.請(qǐng)你根據(jù)以上材料完成下列問(wèn)題:(1)完成下面證明過(guò)程(將正確答案寫(xiě)在相應(yīng)的橫線上).證明:由作圖可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)這種作一個(gè)角等于已知角的方法依據(jù)是.(填序號(hào))①AAS;②ASA;③SSS;④SAS2、如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,CE交BA于點(diǎn)D,CE交BF于點(diǎn)M.求證:(1)EC=BF;(2)EC⊥BF.3、在中,,,點(diǎn)D是直線AC上一動(dòng)點(diǎn),連接BD并延長(zhǎng)至點(diǎn)E,使.過(guò)點(diǎn)E作于點(diǎn)F.(1)如圖1,當(dāng)點(diǎn)D在線段AC上(點(diǎn)D不與點(diǎn)A和點(diǎn)C重合)時(shí),此時(shí)DF與DC的數(shù)量關(guān)系是______.(2)如圖2,當(dāng)點(diǎn)D在線段AC的延長(zhǎng)線上時(shí),依題意補(bǔ)全圖形,并證明:.(3)當(dāng)點(diǎn)D在線段CA的延長(zhǎng)線上時(shí),直接用等式表示線段AD,AF,EF之間的數(shù)量關(guān)系是______.4、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,AB=DE,AC=DF,BF=EC.AB和DE的位置關(guān)系是什么?請(qǐng)說(shuō)明你的理由.5、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,AB=DE,∠B=∠E,BF=CE.求證:AC=DF.6、如圖,在和中,,,,.連接,交于點(diǎn),連接.(Ⅰ)求證:;(Ⅱ)求的大?。唬á螅┣笞C:-參考答案-一、單選題1、C【分析】根據(jù)已知的三角形求第三個(gè)內(nèi)角的度數(shù),由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個(gè)內(nèi)角的度數(shù)為,A.只有兩邊,故不能判斷三角形全等,故此選項(xiàng)錯(cuò)誤;B.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤;C.兩邊相等且?jiàn)A角相等,故能判斷兩三角形全等,故此選項(xiàng)正確;D.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關(guān)鍵.2、B【分析】利用全等三角形的判定方法對(duì)各選項(xiàng)進(jìn)行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當(dāng)∠BAD=∠ABC時(shí),“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;B、當(dāng)∠BAC=∠ABD時(shí),根據(jù)“SAS”可判斷△ABC≌△BAD,該選項(xiàng)符合題意;C、當(dāng)∠DAC=∠CBD時(shí),由三角形內(nèi)角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題考查了全等三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.3、C【分析】利用三角形的高的定義可得答案.【詳解】解:BE不是△ABC的高線的圖是C,故選:C.【點(diǎn)睛】此題主要考查了三角形的高,關(guān)鍵是掌握從三角形的一個(gè)頂點(diǎn)向底邊作垂線,垂足與頂點(diǎn)之間的線段叫做三角形的高.4、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點(diǎn)睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個(gè)三角形的面積相等.5、B【分析】根據(jù)三角形外角的性質(zhì):三角形一個(gè)外角的度數(shù)等于與其不相鄰的兩個(gè)內(nèi)角的度數(shù)和進(jìn)行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點(diǎn)睛】本題主要考查了三角形外角的性質(zhì),解一元一次方程,熟知三角形外角的性質(zhì)是解題的關(guān)鍵.6、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【詳解】解:設(shè)第三邊長(zhǎng)為xcm,根據(jù)三角形的三邊關(guān)系可得:3-2<x<3+2,解得:1<x<5,只有C選項(xiàng)在范圍內(nèi).故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,關(guān)鍵是掌握第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.7、A【分析】三角形的任意兩條之和大于第三邊,任意兩邊之差小于第三邊,根據(jù)原理再分別計(jì)算每組線段當(dāng)中較短的兩條線段之和,再與最長(zhǎng)的線段進(jìn)行比較,若和大于最長(zhǎng)的線段的長(zhǎng)度,則三條線段能構(gòu)成三角形,否則,不能構(gòu)成三角形,從而可得答案.【詳解】解:所以以3cm,4cm,5cm為邊能構(gòu)成三角形,故A符合題意;所以以3cm,3cm,6cm為邊不能構(gòu)成三角形,故B不符合題意;所以以5cm,10cm,4cm為邊不能構(gòu)成三角形,故C不符合題意;所以以1cm,2cm,3cm為邊不能構(gòu)成三角形,故D不符合題意;故選A【點(diǎn)睛】本題考查的是三角形的三邊之間的關(guān)系,掌握“利用三角形三邊之間的關(guān)系判定三條線段能否組成三角形”是解本題的關(guān)鍵.8、D【分析】根據(jù)三角形三邊關(guān)系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設(shè)第三邊為x,則5?2<x<5+2,即3<x<7,所以選項(xiàng)D符合題意.故選:D.【點(diǎn)睛】本題考查三角形三邊關(guān)系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎(chǔ)題,中考??碱}型.9、B【分析】根據(jù)三角形面積公式由點(diǎn)為的中點(diǎn)得到,同理得到,則,然后再由點(diǎn)為的中點(diǎn)得到.【詳解】解:點(diǎn)為的中點(diǎn),,點(diǎn)為的中點(diǎn),,,點(diǎn)為的中點(diǎn),.故選:.【點(diǎn)睛】本題考查了三角形的中線與面積的關(guān)系,解題的關(guān)鍵是掌握是三角形的中線把三角形的面積平均分成兩半.10、D【分析】首先根據(jù)三角形的三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,求出AB的取值范圍,然后再判斷各選項(xiàng)是否正確.【詳解】解:∵PA=100m,PB=90m,∴根據(jù)三角形的三邊關(guān)系得到:,∴,∴點(diǎn)A與點(diǎn)B之間的距離不可能是20m,故選A.【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,掌握三角形兩邊只差小于第三邊、兩邊之和大于第三邊是解題的關(guān)鍵.二、填空題1、不合格【分析】連接AC并延長(zhǎng),然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進(jìn)行判定.【詳解】解:如圖,連接AC并延長(zhǎng),由三角形的外角性質(zhì)可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個(gè)零件不合格.故答案為:不合格.【點(diǎn)睛】本題考查了三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出兩個(gè)三角形是解題的關(guān)鍵.2、5【分析】利用三角形的中線把三角形分成面積相等的兩個(gè)三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點(diǎn)睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個(gè)三角形的性質(zhì)求解是解題的關(guān)鍵.3、-2【分析】過(guò)E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點(diǎn)E在直線y=x-4上,當(dāng)OE⊥CD時(shí),OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過(guò)E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點(diǎn)C(4,0),點(diǎn)D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點(diǎn)E在直線CD上,當(dāng)OE⊥CD時(shí),OE最小,此時(shí)△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時(shí)點(diǎn)E的坐標(biāo)為:(2,-2).故答案為:-2【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點(diǎn)E運(yùn)動(dòng)的軌跡,確定點(diǎn)E的位置.4、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.5、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點(diǎn)睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.6、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯(cuò)誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點(diǎn)睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識(shí)點(diǎn)的運(yùn)用.要求學(xué)生具備運(yùn)用這些定理進(jìn)行推理的能力.7、5【分析】由題意易得,然后可證,則有,進(jìn)而問(wèn)題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.8、##【分析】先利用線段和差求EF=BE﹣BF=a-b,根據(jù)全等三角形的性質(zhì)BC=EF,再結(jié)合線段和差求出FC可得答案.【詳解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案為:.【點(diǎn)睛】本題考查全等三角形的性質(zhì),線段和差,解題的關(guān)鍵是根據(jù)全等三角形的性質(zhì)得出BC=EF.9、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長(zhǎng),再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長(zhǎng)=四邊形BDEC的周長(zhǎng)=∵在中∴即的周長(zhǎng)一定大于四邊形BDEC的周長(zhǎng),∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點(diǎn)睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識(shí)點(diǎn).10、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點(diǎn),得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點(diǎn),∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點(diǎn)睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個(gè)三角形的面積比等于它們的底的比;等底的兩個(gè)三角形的面積比等于它們的高的比.三、解答題1、(1)CD,O′D′,△OCD,(2)③【分析】(1)根據(jù)SSS證明△D′O′C′≌△DOC,可得結(jié)論;(2)根據(jù)SSS證明三角形全等.(1)證明:由作圖可知,在△D′O′C′和△DOC中,,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB.故答案為:CD,O′D′,△OCD,(2)解:上述證明過(guò)程中利用三角形全等的方法依據(jù)是SSS,故答案為:③【點(diǎn)睛】本題考查三角形綜合題,考查了三角形全等的判定和性質(zhì),解題的關(guān)鍵是讀懂圖象信息,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.2、(1)見(jiàn)解析;(2)見(jiàn)解析【詳解】(1)先利用SAS證明△ABF≌△AEC即可得到EC=BF;(2)根據(jù)(1)中的全等推得∠AEC=∠ABF,根據(jù)∠BAE=90°,∠AEC+∠ADE=90°,再根據(jù)對(duì)頂角相等,等量代換后,推得∠BMD=90°.【解答】證明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAF,在△ABF和△AEC中,,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如圖,由(1)得:△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∴∠ADE=∠BDM(對(duì)頂角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,∴EC⊥BF.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,對(duì)頂角的定義,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、(1)(2)見(jiàn)解析(3)【分析】(1)利用邊相等和角相等,直接證明,即可得到結(jié)論.(2)利用邊相等和角相等,直接證明,得到和,最后通過(guò)邊與邊之間的關(guān)系,即可證明結(jié)論成立.(3)要證明,先利用邊相等和角相等,直接證明,得到和,最后通過(guò)邊與邊之間的關(guān)系,即可證明結(jié)論成立.【詳解】(1)解:,,,在和中,,.(2)解:當(dāng)點(diǎn)D在線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論