




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省赤壁市中考數(shù)學(xué)能力檢測試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、當(dāng)0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,42、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與所在直線的位置關(guān)系是(
)A.相交 B.相離 C.相切 D.無法判斷3、對(duì)于拋物線,下列說法正確的是()A.拋物線開口向上B.當(dāng)時(shí),y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點(diǎn)坐標(biāo)為(1,﹣2)4、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,則a,b,c的值分別為()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,105、有6張撲克牌(如圖),背面朝上,從中任抽一張,則抽到方塊牌的概率是()A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、已知,⊙的半徑為5,,某條經(jīng)過點(diǎn)的弦的長度為整數(shù),則該弦的長度可能為(
)A.4 B.6 C.8 D.102、運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時(shí)間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對(duì)稱軸是直線C.足球被踢出9s時(shí)落地D.足球被踢出1.5s時(shí),距離地面的高度是11m3、下列關(guān)于x的方程沒有實(shí)數(shù)根的是(
)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=04、如圖是拋物線的一部分,拋物線的頂點(diǎn)坐標(biāo)是A(1,3),與x軸的一個(gè)交點(diǎn)是B(4,0),點(diǎn)P在拋物線上,且在直線AB上方,則下列結(jié)論正確的是(
)A. B.方程有兩個(gè)相等的實(shí)根C. D.點(diǎn)P到直線AB的最大距離5、如圖,是的直徑,,交于點(diǎn),交于點(diǎn),是的中點(diǎn),連接.則下列結(jié)論正確的是(
)A. B. C. D.是的切線第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如果關(guān)于的一元二次方程的一個(gè)解是,那么代數(shù)式的值是___________.2、如圖,在一塊長12m,寬8m的矩形空地上,修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條平行),剩余部分栽種花草,且栽種花草的面積77m2,設(shè)道路的寬為xm,則根據(jù)題意,可列方程為_______.3、如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.4、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P是以C(﹣1,0)為圓心,1為半徑的圓上一點(diǎn),連接PA,PB,則△PAB面積的最大值為_____.5、一個(gè)直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.四、解答題(6小題,每小題10分,共計(jì)60分)1、解方程(組):(1)(2);(3)x(x-7)=8(7-x).2、已知x1,x2是關(guān)于x的一元二次方程x2-4mx+4m2-9=0的兩實(shí)數(shù)根.(1)若這個(gè)方程有一個(gè)根為-1,求m的值;(2)若這個(gè)方程的一個(gè)根大于-1,另一個(gè)根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.3、在“鄉(xiāng)村振興”行動(dòng)中,某村辦企業(yè)以,兩種農(nóng)作物為原料開發(fā)了一種有機(jī)產(chǎn)品,原料的單價(jià)是原料單價(jià)的1.5倍,若用900元收購原料會(huì)比用900元收購原料少.生產(chǎn)該產(chǎn)品每盒需要原料和原料,每盒還需其他成本9元.市場調(diào)查發(fā)現(xiàn):該產(chǎn)品每盒的售價(jià)是60元時(shí),每天可以銷售500盒;每漲價(jià)1元,每天少銷售10盒.(1)求每盒產(chǎn)品的成本(成本=原料費(fèi)+其他成本);(2)設(shè)每盒產(chǎn)品的售價(jià)是元(是整數(shù)),每天的利潤是元,求關(guān)于的函數(shù)解析式(不需要寫出自變量的取值范圍);(3)若每盒產(chǎn)品的售價(jià)不超過元(是大于60的常數(shù),且是整數(shù)),直接寫出每天的最大利潤.4、如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),連接.(1)求拋物線的解析式;(2)點(diǎn)在拋物線的對(duì)稱軸上,當(dāng)?shù)闹荛L最小時(shí),點(diǎn)的坐標(biāo)為_____________;(3)點(diǎn)是第四象限內(nèi)拋物線上的動(dòng)點(diǎn),連接和.求面積的最大值及此時(shí)點(diǎn)的坐標(biāo);(4)若點(diǎn)是對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn),使以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.5、已知P為⊙O上一點(diǎn),過點(diǎn)P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑。(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。6、如圖,已知點(diǎn)在上,點(diǎn)在外,求作一個(gè)圓,使它經(jīng)過點(diǎn),并且與相切于點(diǎn).(要求寫出作法,不要求證明)-參考答案-一、單選題1、A【解析】【分析】利用配方法把原方程化為頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當(dāng)x=2時(shí),最大值是9,∵0≤x≤3,∴x=0時(shí),最小值是5,故選:A.【考點(diǎn)】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點(diǎn)式是解答本題的關(guān)鍵.2、A【解析】【分析】過點(diǎn)C作CD⊥AB于點(diǎn)D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點(diǎn)C作CD⊥AB于點(diǎn)D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點(diǎn)為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點(diǎn)】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對(duì)各項(xiàng)進(jìn)行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項(xiàng)不符合題意;B、拋物線對(duì)稱軸為,結(jié)合其開口方向向下,可知當(dāng)時(shí),y隨x增大而減小,選項(xiàng)說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項(xiàng)不符合題意;D、拋物線頂點(diǎn)坐標(biāo)為(-1,-2),選項(xiàng)不符合題意.故選:B.【考點(diǎn)】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運(yùn)用拋物線的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)以及二次函數(shù)圖象的增減性解題.4、D【解析】【分析】先把x2+2x=5(x﹣2)化簡,然后根據(jù)一元二次方程的一般形式即可得到a、b、c的值.【詳解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,則a=1,b=﹣3,c=10,故選:D.【考點(diǎn)】此題主要考查了一元二次方程化為一般形式,熟練掌握一元二次方程的一般形式是解題的關(guān)鍵.5、A【解析】【分析】m表示事件A發(fā)生可能出現(xiàn)的次數(shù),n表示一次試驗(yàn)所有等可能出現(xiàn)的次數(shù);代入公式即可求得概率.【詳解】解:觀察圖形知:6張撲克中有2張方塊,所以從中任抽一張,則抽到方塊的概率故選A.【考點(diǎn)】考查概率的計(jì)算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.二、多選題1、CD【解析】【分析】過P作弦AB⊥OP,連接OA,根據(jù)垂徑定理求出AP=BP,根據(jù)勾股定理求出AP,再求出AB,再得出答案即可.【詳解】解:過P作弦AB⊥OP,連接OA,如圖,∵OA=5,OP=3,∴,∵OP⊥AB,OP過圓心O,∴AP=BP=4,即AB=4+4=8,∴過P點(diǎn)長度為整數(shù)的弦有4條,①過P點(diǎn)最短的弦的長度是8,②過P點(diǎn)最長的弦的長度是10,③還有兩條弦,長度是9,故答案為:CD.【考點(diǎn)】本題考查了勾股定理和垂徑定理,能熟記垂徑定理是解此題的關(guān)鍵.2、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯(cuò)誤,∴拋物線的對(duì)稱軸t=4.5,故B正確,∵t=9時(shí),h=0,∴足球被踢出9s時(shí)落地,故C正確,∵t=1.5時(shí),h=11.25,故D錯(cuò)誤.∴正確的有②③,故選:BC【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.3、ABD【解析】【分析】將選項(xiàng)中的式子轉(zhuǎn)換為一元二次方程一般式,根據(jù)根的判別式可得結(jié)果.【詳解】解:A、x2-x+1=0,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;B、x2+x+1=0,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;C、(x-1)(x+2)=0,,方程有實(shí)數(shù)根,此選項(xiàng)不符合題意;D、原式整理為:,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題考查了根的判別式:一元二次方程的根與有如下關(guān)系:當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程無實(shí)數(shù)根.4、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、坐標(biāo)系內(nèi)直線的平移、利用配方法求二次三項(xiàng)式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項(xiàng)錯(cuò)誤;由圖象可知,直線與拋物線只有一個(gè)交點(diǎn),則方程有兩個(gè)相等的實(shí)根,故B選項(xiàng)正確;當(dāng)時(shí),拋物線由最大值,則,即,故C選項(xiàng)正確;設(shè)直線AB的表達(dá)式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對(duì)稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個(gè)交點(diǎn)時(shí)至,要求點(diǎn)P到直線AB的最大距離,即點(diǎn)P為直線與拋物線的交點(diǎn),過點(diǎn)作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設(shè)直線的表達(dá)式為,當(dāng)與拋物線有一個(gè)交點(diǎn)時(shí),即,整理得,由于只有一個(gè)交點(diǎn),則,解得,即直線AB向上平移了:,則,則,點(diǎn)P到直線AB的最大距離,故D選項(xiàng)正確,故選BCD.【考點(diǎn)】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關(guān)系、函數(shù)與不等式的關(guān)系、平面直角坐標(biāo)系內(nèi)直線的平移,解題的關(guān)鍵學(xué)會(huì)利用函數(shù)圖象解決問題,靈活運(yùn)用相關(guān)知識(shí)解決問題,本題難點(diǎn)在于要求拋物線上的點(diǎn)到直線的最大距離即求直線平移至與拋物線有一個(gè)交點(diǎn)時(shí)交點(diǎn)到直線的距離.5、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點(diǎn),得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設(shè)推出不正確.【詳解】解:連接,.是的直徑,(直徑所對(duì)的圓周角是直角),;而在中,,是邊上的中線,選項(xiàng)符合題意);是的直徑,,,,,,選項(xiàng)符合題意),是的中位線,即:,是的中點(diǎn),是的中位線,,.是的切線選項(xiàng)符合題意);只有當(dāng)是等腰直角三角形時(shí),,故選項(xiàng)錯(cuò)誤,不符合題意,故選:BCD.【考點(diǎn)】本題考查的知識(shí)點(diǎn)是切線的判定與性質(zhì)、等腰三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是運(yùn)用等腰三角形性質(zhì)及圓周角定理及切線性質(zhì)作答.三、填空題1、【解析】【分析】根據(jù)關(guān)于的一元二次方程的一個(gè)解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關(guān)于的一元二次方程的一個(gè)解是,,,.故答案為:2020.【考點(diǎn)】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確一元二次方程的解的含義.2、(12-x)(8-x)=77【解析】【分析】道路外的四塊土地拼到一起正好構(gòu)成一個(gè)矩形,矩形的長和寬分別是(12-x)和(8-x),根據(jù)矩形的面積公式,列出關(guān)于道路寬的方程求解.【詳解】道路的寬為x米.依題意得:(12-x)(8-x)=77,故答案為(12-x)(8-x)=77.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,關(guān)鍵將四個(gè)矩形用恰當(dāng)?shù)姆绞狡闯纱缶匦瘟谐龅攘筷P(guān)系.3、【解析】【分析】根據(jù)已知建立平面直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把代入拋物線解析式得出水面寬度,即可得出答案.【詳解】建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),拋物線以y軸為對(duì)稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半2米,拋物線頂點(diǎn)C坐標(biāo)為通過以上條件可設(shè)頂點(diǎn)式,其中可通過代入A點(diǎn)坐標(biāo)代入到拋物線解析式得出:所以拋物線解析式為當(dāng)水面下降2米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:當(dāng)時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線與拋物線相交的兩點(diǎn)之間的距離,可以通過把代入拋物線解析式得出:解得:
所以水面寬度增加到米,比原先的寬度當(dāng)然是增加了故答案是:【考點(diǎn)】考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵.4、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標(biāo),根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點(diǎn)C到AB的距離CH,即可求出圓C上點(diǎn)到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),∴當(dāng)y=0時(shí),可得0=﹣x+6,解得:x=8,∴A(8,0),當(dāng)x=0時(shí),得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點(diǎn)】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識(shí),解此題的關(guān)鍵是求出圓上的點(diǎn)到直線AB的最大距離.5、cm【解析】【分析】設(shè)較短的直角邊長是xcm,較長的就是(x+5)cm,根據(jù)面積是7cm,求出直角邊長,根據(jù)勾股定理求出斜邊長.【詳解】解:設(shè)這個(gè)直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據(jù)題意,得,所以,解得,,因?yàn)橹苯侨切蔚倪呴L為正數(shù),所以不符合題意,舍去,所以x=2,當(dāng)x=2時(shí),x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點(diǎn)】本題考查了勾股定理,一元二次方程的應(yīng)用,關(guān)鍵是知道三角形面積公式以及直角三角形中勾股定理的應(yīng)用.四、解答題1、(1)(2)x=-(3)x1=7,x2=-8【解析】【分析】(1)根據(jù)代入消元法,可得方程組的解;(2)根據(jù)等式的性質(zhì),化為整式方程,根據(jù)解整式方程,可得答案;(3)先移項(xiàng),再提公因式,再求解即可.(1)由①,得y=3x+4③將③代入②,得x-2(3x+4)=-3,解得x=-1,將x=-1代入③,解得y=1.所以原方程組的解為;(2);解:方程兩邊都乘(x+1)(x-1),得(x-1)2-3=(x+1)(x-1),解得x=-.經(jīng)檢驗(yàn),x=-是原方程的解.(3)x(x-7)=8(7-x).解:原方程可變形為x(x-7)+8(x-7)=0,(x-7)(x+8)=0.x-7=0,或x+8=0.∴x1=7,x2=-8.【考點(diǎn)】本題考查了解二元一次方程組、分式方程及一元二次方程,利用等式的性質(zhì)得出整式方程是解題關(guān)鍵,要檢驗(yàn)分時(shí)方程的根.2、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長為7或2m+3,根據(jù)勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實(shí)數(shù)根,這個(gè)方程有一個(gè)根為-1,∴將x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值為1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴解得-2<m<1.∴m的取值范圍是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的兩根分別為2m+3,2m-3.若Rt△ABC的斜邊長為7,則有49=(2m+3)2+(2m-3)2.解得m=±.∵邊長必須是正數(shù),∴m=.若斜邊為2m+3,則(2m+3)2=(2m-3)2+72.解得m=.綜上所述,m=或m=.【考點(diǎn)】本題主要考查了根的判別式與根與系數(shù)的關(guān)系的知識(shí),解答本題的關(guān)鍵是熟練掌握根與系數(shù)關(guān)系以及根的判別式的知識(shí),此題難度一般.3、(1)每盒產(chǎn)品的成本為30元.(2);(3)當(dāng)時(shí),每天的最大利潤為16000元;當(dāng)時(shí),每天的最大利潤為元.【解析】【分析】(1)設(shè)原料單價(jià)為元,則原料單價(jià)為元.然后再根據(jù)“用900元收購原料會(huì)比用900元收購原料少”列分式方程求解即可;(2)直接根據(jù)“總利潤=單件利潤×銷售數(shù)量”列出解析式即可;(3)先確定的對(duì)稱軸和開口方向,然后再根據(jù)二次函數(shù)的性質(zhì)求最值即可.【詳解】解:(1)設(shè)原料單價(jià)為元,則原料單價(jià)為元.依題意,得.解得,,.經(jīng)檢驗(yàn),是原方程的根.∴每盒產(chǎn)品的成本為:(元).答:每盒產(chǎn)品的成本為30元.(2);(3)∵拋物線的對(duì)稱軸為=70,開口向下∴當(dāng)時(shí),a=70時(shí)有最大利潤,此時(shí)w=16000,即每天的最大利潤為16000元;當(dāng)時(shí),每天的最大利潤為元.【考點(diǎn)】本題主要考查了分式方程的應(yīng)用、二次函數(shù)的應(yīng)用等知識(shí)點(diǎn),正確理解題意、列出分式方程和函數(shù)解析式成為解答本題的關(guān)鍵.4、(1);(2);(3)面積最大為,點(diǎn)坐標(biāo)為;(4)存在點(diǎn),使以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,,點(diǎn)坐標(biāo)為,,.【解析】【分析】(1)將點(diǎn),代入即可求解;(2)BC與對(duì)稱軸的交點(diǎn)即為符合條件的點(diǎn),據(jù)此可解;(3)過點(diǎn)作軸于點(diǎn),交直線與點(diǎn),當(dāng)EF最大時(shí)面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對(duì)邊平行且相等的性質(zhì)可以得到存在點(diǎn)N使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點(diǎn),解得:拋物線解析式為.(2)點(diǎn),∴拋物線對(duì)稱軸為直線點(diǎn)在直線上,點(diǎn),關(guān)于直線對(duì)稱,當(dāng)點(diǎn)、、在同一直線上時(shí),最?。畳佄锞€解析式為,∴C(0,-6),設(shè)直線解析式為,解得:直線:,,故答案為:.(3)過點(diǎn)作軸于點(diǎn),交直線與點(diǎn),設(shè),則,當(dāng)時(shí),面積最大為,此時(shí)點(diǎn)坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣協(xié)議
- 君天酒店合伙經(jīng)營協(xié)議書
- 出租房協(xié)議范本
- 基本知識(shí)培訓(xùn)課件學(xué)習(xí)心得
- 基層調(diào)解基礎(chǔ)知識(shí)培訓(xùn)課件
- 八年級(jí)數(shù)學(xué)一次函數(shù)與方程試卷及答案
- 三類分?jǐn)?shù)階微分方程邊值問題的Lyapunov不等式研究:理論與應(yīng)用
- 八年級(jí)數(shù)學(xué)全等三角形綜合試卷及答案
- 八年級(jí)數(shù)學(xué)全等三角形判定練習(xí)試卷及答案
- 基層醫(yī)院行風(fēng)建設(shè)課件
- 上海虹橋新港商業(yè)策劃過程稿
- 文秘考試題庫及答案
- (標(biāo)準(zhǔn))物流公司轉(zhuǎn)讓協(xié)議書合同
- 醫(yī)院護(hù)理人員招聘考試試題與答案
- 2025年黨員領(lǐng)導(dǎo)干部廉潔自律知識(shí)考試題庫及答案
- 2025年小學(xué)教師資格綜合素質(zhì)教育心理學(xué)理論應(yīng)用測試題庫
- 企業(yè)能力分級(jí)管理辦法
- 無負(fù)壓供水系統(tǒng)施工技術(shù)與方案
- 欄桿標(biāo)準(zhǔn)化設(shè)計(jì)說明
- 田徑校本教材--
- 焊接工藝不銹鋼的焊接
評(píng)論
0/150
提交評(píng)論