




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省清鎮(zhèn)市中考數學真題分類(平行線的證明)匯編單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,點E在的延長線上,下列條件不能判斷的是(
)A. B. C. D.2、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數是(
)A.108° B.104° C.96° D.92°3、如圖,直線a,b被直線c所截,下列條件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠34、如圖,在△ABC中,∠A=90°,BE,CD分別平分∠ABC和∠ACB,且相交于F,,于點G,則下列結論①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正確的結論是(
)A.①②③ B.①③④ C.①③④⑤ D.①②③④5、如圖,是某企業(yè)甲、乙兩位員工的能力測試結果的網狀圖,以O為圓心的五個同心圓分別代表能力水平的五個等級由低到高分別賦分1至5分,由原點出發(fā)的五條線段分別指向能力水平的五個維度,網狀圖能夠更加直觀的描述測試者的優(yōu)勢和不足,觀察圖形,有以下幾個推斷:①甲和乙的動手操作能力都很強;②缺少探索學習的能力是甲自身的不足;③與甲相比乙需要加強與他人的溝通合作能力;④乙的綜合評分比甲要高.其中合理的是(
)A.①③ B.②④ C.①②③ D.①②③④6、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點,如果設∠BAC=n°,那么用含n的代數式表示∠BOC的度數是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°7、將一副學生用的三角板(一個銳角為30°的直角三角形,一個銳角為45°的直角三角形)如圖疊放,則下列4個結論中正確的個數有(
)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,則OC平分∠AOBA.0 B.1 C.2 D.38、下列圖形中,由AB∥CD,能得到∠1=∠2的是(
)A. B.C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,給出下列條件:①;②;③;④;⑤.其中,一定能判定∥的條件有_____________(填寫所有正確的序號).2、一大門欄桿的平面示意圖如圖所示,BA垂直地面AE于點A,CD平行于地面AE,若∠BCD=150°,則∠ABC=_____度.3、如圖,一束光沿方向,先后經過平面鏡、反射后,沿方向射出,已知,,則_________.4、將“對頂角相等”改寫為“如果...那么...”的形式,可寫為__________.5、把“對頂角相等”改寫成“如果…那么…”的形式____________________________________________.6、如圖,點O是△ABC的三條角平分線的交點,連結AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)7、如圖,DE⊥AB,∠A=25°,∠D=45°,則∠ACB的度數為_____三、解答題(7小題,每小題10分,共計70分)1、如圖,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于點E.P是邊BC上的動點(不與B,C重合),連結AP,將△APC沿AP翻折得△APD,連結DC,記∠BCD=α.(1)如圖,當P與E重合時,求α的度數.(2)當P與E不重合時,記∠BAD=β,探究α與β的數量關系.2、已知ABCD,解決下列問題:(1)如圖①,寫出∠ABE、∠CDE和∠E之間的數量關系,并說明理由;(2)如圖②,BP、DP分別平分∠ABE、∠CDE,若∠E=100°,求∠P的度數.3、已知://.求證://.4、如圖,在中,,點D在線段BC上運動(D不與B、C重合),連接AD,作,DE交線段AC于E.(1)點D從B向C運動時,逐漸變__________(填“大”或“小”),但與的度數和始終是__________度.(2)當DC的長度是多少時,,并說明理由.5、問題情景:如圖1,在同一平面內,點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側,若點在內部,試問,與的大小是否滿足某種確定的數量關系?(1)特殊探究:若,則_________度,________度,_________度;(2)類比探索:請猜想與的關系,并說明理由;(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數量關系式.6、如圖,△ABC中,E是AB上一點,過D作DEBC交AB于E點,F是BC上一點,連接DF.若∠AED=∠1.(1)求證:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度數.7、如圖,在△ABC中,點D為∠ABC的平分線BD上一點,連接AD,過點D作EF∥BC交AB于點E,交AC于點F.(1)如圖1,若AD⊥BD于點D,∠BEF=120°,求∠BAD的度數;(2)如圖2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度數(用含α和β的代數式表示).-參考答案-一、單選題1、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當∠5=∠B時,AB∥CD,不合題意;B、當∠1=∠2時,AB∥CD,不合題意;C、當∠B+∠BCD=180°時,AB∥CD,不合題意;D、當∠3=∠4時,AD∥CB,符合題意;故選:D.【考點】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關鍵.2、D【解析】【分析】根據兩直線平行,同位角相等可得∠ADE=∠B,再根據翻折變換的性質可得∠A′DE=∠ADE,然后根據平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質,翻折變換的性質,三角形的內角和定理,熟記性質并準確識圖理清圖中各角度之間的關系是解題的關鍵.3、D【解析】【分析】根據同位角相等,兩直線平行;同旁內角互補,兩直線平行;內錯角相等,兩直線平行,進行判斷即可.【詳解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故選D.【考點】本題主要考查了平行線的判定,熟記平行線的判定方法是解題的關鍵.解答此類要判定兩直線平行的題,可圍繞截線找同位角、內錯角和同旁內角.4、C【解析】【分析】根據平行線的性質與角平分線的定義即可判斷①;只需要證明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判斷③;根據角平分線的定義和三角形內角和定理先推出,即可判斷④⑤;根據現有條件無法推出②.【詳解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正確;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正確;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分別平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正確;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正確;根據現有條件,無法推出CA平分∠BCG,故②錯誤;故選C.【考點】本題主要考查了平行線的性質,角平分線的定義,三角形內角和定理,熟知平行線的性質,角平分線的定義是解題的關鍵.5、D【解析】【分析】根據甲、乙兩位員工的能力測試結果的網狀圖一一判斷即可得到答案;【詳解】解:因為甲、乙兩位員工的動手操作能力均是5分,故甲乙兩人的動手操作能力都很強,故①正確;因為甲的探索學習的能力是1分,故缺少探索學習的能力是甲自身的不足,故②正確;甲的與他人的溝通合作能力是5分,乙的與他人的溝通合作能力是3分,故與甲相比乙需要加強與他人的溝通合作能力,故③正確;乙的綜合評分是:3+4+4+5+5=22分,甲的綜合評分是:1+4+4+5+5=19分,故乙的綜合評分比甲要高,故④正確;故選:D;【考點】本題主要考查圖象信息題,能從圖象上獲取相關的信息是解題的關鍵;6、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據三角形內角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據三角形的外角性質有∠BOC=∠EBD+∠BEO,計算即可得到∠BOC的度數.【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點】本題考查了三角形的外角性質,垂直的定義以及三角形內角和定理,掌握以上性質定理是解答本題的關鍵.7、D【解析】【分析】根據同角的余角相等可得∠AOC=∠BOD;根據三角形的內角和即可得出∠AOC-∠CEA=15°;根據角平分線的定義可判定OC平分∠AOB.【詳解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正確;如圖,AB與OC交于點P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正確;如果OB平分∠DOC,則∠DOB=∠BOC=45°,則∠AOC=∠BOC=45°,故OC平分∠AOB,故④正確;由②知:∠AOC=∠BOD,故當∠AOC=∠BOD=45°時,∠AOC+∠BOD=90°成立,否則不成立,故①不正確;綜上,②③④正確,共3個,故選:D.【考點】本題考查了余角以及三角形內角和定理,角平分線的定義,熟知余角的性質以及三角形內角和是180°是解答此題的關鍵.8、B【解析】【分析】根據平行四邊形的性質逐項判斷即可.【詳解】A、∵AB//CD,∴∠1+∠2=180°.故本選項不符合題意;B、如圖,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本選項正確.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本選項不符合題意;D、當梯形ABDC是等腰梯形時才有,∠1=∠2.故本選項不符合題意.故選:B.【考點】本題考查平行線的性質,熟練掌握平行線的性質是解答的關鍵.二、填空題1、①③④【解析】【分析】根據平行線的判定方法對各小題判斷即可解答.【詳解】①∵,∴∥(同旁內角互補,兩直線平行),正確;②∵,∴∥,錯誤;③∵,∴∥(內錯角相等,兩直線平行),正確;④∵,∴∥(同位角相等,兩直線平行),正確;⑤不能證明∥,錯誤,故答案為:①③④.【考點】本題考查了平行線的判定,熟練掌握平行線的判定方法是解答的關鍵.2、120【解析】【分析】先過點B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,繼而證得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【詳解】解:如圖,過點B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案為:120.【考點】此題考查了平行線的性質,解題的關鍵是注意掌握輔助線的作法,注意數形結合思想的應用.3、40°##40度【解析】【分析】根據入射角等于反射角,可得,根據三角形內角和定理求得,進而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點】本題考查了軸對稱的性質,三角形內角和定理的應用,掌握軸對稱的性質是解題的關鍵.4、如果兩個角互為對頂角,那么這兩個角相等【解析】【分析】根據命題的形式解答即可.【詳解】將“對頂角相等”改寫為“如果...那么...”的形式,可寫為如果兩個角互為對頂角,那么這兩個角相等,故答案為:如果兩個角互為對頂角,那么這兩個角相等.【考點】此題考查命題的形式,可寫成用關聯詞“如果...那么...”連接的形式,準確確定命題中的題設和結論是解題的關鍵.5、如果兩個角是對頂角,那么它們相等【解析】【分析】先找到命題的題設和結論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個角是對頂角”,結論是:“它們相等”,∴命題“對頂角相等”寫成“如果…那么…”的形式為:“如果兩個角是對頂角,那么它們相等”.故答案為:如果兩個角是對頂角,那么它們相等.【考點】本題考查了命題的條件和結論的敘述,注意確定一個命題的條件與結論的方法是首先把這個命題寫成:“如果…,那么…”的形式.6、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質進行計算分析即可;③根據∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質是解題的關鍵.7、110°【解析】【分析】由DE與AB垂直,利用垂直的定義得到∠BED為直角,進而確定出△BDE為直角三角形,利用直角三角形的兩銳角互余,求出∠B的度數,在△ABC中,利用三角形的內角和定理即可求出∠ACB的度數.【詳解】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°-∠BED-∠D=45°,又∵∠A=25°,∵∠ACB=180°-(∠A+∠B)=110°.故答案為110°【考點】此題考查了三角形的外角性質,直角三角形的性質,以及三角形的內角和定理,熟練掌握性質及定理是解本題的關鍵.三、解答題1、(1)25°(2)①當點P在線段BE上時,2α-β=50°;②當點P在線段CE上時,2α+β=50°【解析】【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根據AE平分∠BAC,P與E重合,可得∠ACD,從而α=∠ACB?∠ACD;(2)分兩種情況:①當點P在線段BE上時,可得∠ADC=∠ACD=90°?α,根據∠ADC+∠BAD=∠B+∠BCD,即可得2α?β=50°;②當點P在線段CE上時,延長AD交BC于點F,由∠ADC=∠ACD=90°?α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°?α=40°+α+β,即2α+β=50°.(1)解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=∠BAC=25°,∵P與E重合,∴D在AB邊上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;(2)①如圖1,當點P在線段BE上時,∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如圖2,當點P在線段CE上時,延長AD交BC于點F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【考點】本題考查三角形綜合應用,涉及軸對稱變換,三角形外角等于不相鄰的兩個內角的和的應用,解題的關鍵是掌握軸對稱的性質,能熟練運用三角形外角的性質.2、(1)∠ABE+∠CDE+∠DEB=360°,理由見解析(2)130°【解析】【分析】(1)過E作EF∥AB,根據平行線的性質即可得出結論;(2)根據得出三角關系,以及角平分線定義求出四邊形PBED中的三個角,進而利用四邊形內角和求出所求角的度數即可.(1)根據題意得:∠ABE+∠CDE+∠E=360°,理由如下:過E作EF∥AB,∴∠FEB+∠EBA=180°,∵CD∥AB,EF∥AB,∴CD∥EF,∴∠CDE+∠DEF=180°,∴∠CDE+∠DEB+∠ABE=360°,故答案為:∠ABE+∠CDE+∠E=360°;(2)∵BP、DP分別平分∠ABE、∠CDE,∴∠EDP∠CDE,∠EBP∠ABE,即∠CDE=2∠EDP,∠ABE=2∠EBP,代入(1)的等式得:2∠EBP+2∠EDP+∠E=360°,∵∠E=100°,∴∠EBP+∠EDP=180°∠E=130°,在四邊形PBED中,∠P=360°﹣(∠EBP+∠EDP+∠E)=360°﹣(130°+100°)=130°.【考點】本題考查平行線的性質和角平分線的性質;熟練掌握平行線的性質和角平分線的性質的運用是解決本題的關鍵.3、見解析【解析】【分析】根據,得到∠A=∠C,然后推出AF=CE,即可證明△ABF≌△CDE得到∠AFB=∠CED,則.【詳解】解:∵,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴.【考點】本題主要考查了全等三角形的性質與判定,平行線的性質與判定,熟知全等三角形的性質與判定條件是解題的關鍵.4、(1)?。?40(2)當DC=2時,△ABD≌△DCE,理由見解析【解析】【分析】(1)利用三角形的內角和即可得出結論;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(1)在△ABD中,∠B+∠BAD+∠ADB=180°,設∠BAD=x°,∠BDA=y°,∴40°+x+y=180°,∴y=140-x(0<x<100),當點D從點B向C運動時,x增大,∴y減小,+=180°-故答案為:小,140;(2)當DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);【考點】此題主要考查學生對等腰三角形的判定與性質,全等三角形的判定與性質,三角形外角的性質等知識點的理解和掌握,三角形的內角和公式,解本題的關鍵是分類討論.5、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見解析;(3)結論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根據三角形內角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根據三角形內角和定理進行等量轉換,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同樣的方法進行等量轉換,求解即可判定.【詳解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;
(2)猜想:∠ABP+∠ACP=90°-∠A;
證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年政策法規(guī)政治建設知識競賽-企業(yè)及注冊建造師市場行為信用評價管理辦法知識競賽歷年參考題庫含答案解析(5套典型考題)
- 2025年執(zhí)業(yè)醫(yī)師考試-口腔執(zhí)業(yè)醫(yī)師實踐技能歷年參考題庫含答案解析(5套典型題)
- 2025年建筑水利市政公路三類人員-天津建筑三類人員考試歷年參考題庫含答案解析(5套典型考題)
- 2025年大學試題(財經商貿)-保險學歷年參考題庫含答案解析(5套典型考題)
- 2025年大學試題(藝術學)-音韻學歷年參考題庫含答案解析(5套典型考題)
- 2025年大學試題(教育學)-比較教育學歷年參考題庫含答案解析(5套典型考題)
- 2025年大學試題(大學選修課)-電影與幸福感歷年參考題庫含答案解析(5套典型考題)
- 2025CSCO小細胞肺癌指南解讀
- 2025年大學試題(醫(yī)學)-皮膚病學歷年參考題庫含答案解析(5套典型考題)
- 病案首頁診斷與手術填寫規(guī)范
- 數據中心運維服務投標方案
- 2024品牌服務合同范本
- 常見職業(yè)病危害和預防基礎知識
- 2024-2025學年北京市東城區(qū)第十一中學高一上學期10月月考化學試題(含答案)
- 高三一輪復習+專題5+離子共存
- 智鼎在線測評題高潛人才
- 高中歷史說課課件
- 光伏電氣設備試驗方案
- 專題13 非連續(xù)性文本閱讀(解析版)
- 武漢××巖土工程勘察詳細報告
- 2024年長沙市雨花區(qū)金海中學小升初數學試卷附參考答案
評論
0/150
提交評論