




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省燈塔市中考數(shù)學(xué)真題分類(平行線的證明)匯編定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,將一副直角三角板按如圖所示疊放,其中,,,則的大小是(
)A. B. C. D.2、將一副學(xué)生用的三角板(一個(gè)銳角為30°的直角三角形,一個(gè)銳角為45°的直角三角形)如圖疊放,則下列4個(gè)結(jié)論中正確的個(gè)數(shù)有(
)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,則OC平分∠AOBA.0 B.1 C.2 D.33、如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°4、下列說(shuō)法正確的是(
)A.“任意畫(huà)一個(gè)三角形,其內(nèi)角和為”是必然事件 B.調(diào)查全國(guó)中學(xué)生的視力情況,適合采用普查的方式C.抽樣調(diào)查的樣本容量越小,對(duì)總體的估計(jì)就越準(zhǔn)確 D.十字路口的交通信號(hào)燈有紅、黃、綠三種顏色,所以開(kāi)車經(jīng)過(guò)十字路口時(shí),恰好遇到黃燈的概率是5、如圖,將三角形紙片沿折疊,當(dāng)點(diǎn)落在四邊形的外部時(shí),測(cè)量得,,則的度數(shù)為(
)A. B. C. D.6、如圖,直線,則(
).A. B. C. D.7、如圖,∠ABD、∠ACD的角平分線交于點(diǎn)P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(
)A.15° B.20° C.25° D.30°8、一把直尺和一塊三角板(含、角)如圖所示擺放,直尺一邊與三角板的兩直角邊分別交于點(diǎn)和點(diǎn),另一邊與三角板的兩直角邊分別交于點(diǎn)和點(diǎn),且,那么的大小為()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、一副三角尺如圖擺放,是延長(zhǎng)線上一點(diǎn),是上一點(diǎn),,,,若∥,則等于_________度.2、如圖,把兩塊大小相同的含45°的三角板ACF和三角板CFB如圖所示擺放,點(diǎn)D在邊AC上,點(diǎn)E在邊BC上,且∠CFE=13°,∠CFD=32°,則∠DEC的度數(shù)為_(kāi)______.3、“兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等”是___命題.(填“真”或“假”)4、如圖所示,請(qǐng)你填寫一個(gè)適當(dāng)?shù)臈l件:_____,使AD∥BC.5、下列說(shuō)法:(1)兩點(diǎn)之間的所有連線中,線段最短;(2)相等的角是對(duì)頂角;(3)過(guò)一點(diǎn)有且僅有一條直線與已知直線平行;(4)長(zhǎng)方體是四棱柱.其中正確的有______(填正確說(shuō)法的序號(hào)).6、“等邊三角形是銳角三角形”的逆命題是_________.7、如圖,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD與BE交于H,則∠CHD=_____.三、解答題(7小題,每小題10分,共計(jì)70分)1、已知://.求證://.2、如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.(1)求∠CBE的度數(shù);(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).3、用兩種方法證明“三角形的外角和等于360°”.已知:如圖,∠BAE,∠CBF,∠ACD是△ABC的三個(gè)外角.求證:∠BAE+∠CBF+∠ACD=360°.證法1:∵_(dá)_______________________________________________________________,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).∵_(dá)_____________,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.4、如圖,點(diǎn)、、、在一條直線上,與交于點(diǎn),,,求證:5、如圖,已知∠1+∠AFE=180°,∠A=∠2,求證:∠A=∠C+∠AFC證明:∵∠1+∠AFE=180°∴CD∥EF(,)∵∠A=∠2
∴()(,)∴AB∥CD∥EF(,)∴∠A=,∠C=,(,)∵∠AFE=∠EFC+∠AFC,∴=.6、如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數(shù).7、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.(1)CD與EF平行嗎?為什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可得∠BAC=45°,根據(jù)鄰補(bǔ)角互補(bǔ)可得∠EAF=135°,然后再利用三角形的外角的性質(zhì)可得∠AFD=135°+30°=165°.即可.【詳解】解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故選:C.【考點(diǎn)】此題主要考查了三角形的內(nèi)角和,三角形的外角的性質(zhì),關(guān)鍵是掌握三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.2、D【解析】【分析】根據(jù)同角的余角相等可得∠AOC=∠BOD;根據(jù)三角形的內(nèi)角和即可得出∠AOC-∠CEA=15°;根據(jù)角平分線的定義可判定OC平分∠AOB.【詳解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正確;如圖,AB與OC交于點(diǎn)P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正確;如果OB平分∠DOC,則∠DOB=∠BOC=45°,則∠AOC=∠BOC=45°,故OC平分∠AOB,故④正確;由②知:∠AOC=∠BOD,故當(dāng)∠AOC=∠BOD=45°時(shí),∠AOC+∠BOD=90°成立,否則不成立,故①不正確;綜上,②③④正確,共3個(gè),故選:D.【考點(diǎn)】本題考查了余角以及三角形內(nèi)角和定理,角平分線的定義,熟知余角的性質(zhì)以及三角形內(nèi)角和是180°是解答此題的關(guān)鍵.3、D【解析】【分析】同位角相等,兩直線平行,同旁內(nèi)角互補(bǔ),兩直線平行,根據(jù)平行線的判定方法逐一分析即可.【詳解】解:(同位角相等,兩直線平行),故A不符合題意;∠2+∠3=180°,(同旁內(nèi)角互補(bǔ),兩直線平行)故B不符合題意;(同位角相等,兩直線平行)故C不符合題意;∠1+∠4=180°,不是同旁內(nèi)角,也不能利用等量代換轉(zhuǎn)換成同旁內(nèi)角,所以不能判定故D符合題意;故選D【考點(diǎn)】本題考查的是平行線的判定,對(duì)頂角相等,掌握“平行線的判定方法”是解本題的關(guān)鍵.4、A【解析】【分析】由三角形的內(nèi)角和定理可判斷A,由抽樣調(diào)查與普查的含義可判斷B,C,由簡(jiǎn)單隨機(jī)事件的概率可判斷D,從而可得答案.【詳解】解:“任意畫(huà)一個(gè)三角形,其內(nèi)角和為”是必然事件,表述正確,故A符合題意;調(diào)查全國(guó)中學(xué)生的視力情況,適合采用抽樣調(diào)查的方式,故B不符合題意;抽樣調(diào)查的樣本容量越小,對(duì)總體的估計(jì)就越不準(zhǔn)確,故C不符合題意;十字路口的交通信號(hào)燈有紅、黃、綠三種顏色,所以開(kāi)車經(jīng)過(guò)十字路口時(shí),恰好遇到黃燈的概率不是,與三種燈的閃爍時(shí)間相關(guān),故D不符合題意;故選A【考點(diǎn)】本題考查的是必然事件的含義,調(diào)查方式的選擇,簡(jiǎn)單隨機(jī)事件的概率,三角形的內(nèi)角和定理的含義,掌握“以上基礎(chǔ)知識(shí)”是解本題的關(guān)鍵.5、B【解析】【分析】根據(jù)折疊∠A′=∠A,根據(jù)鄰補(bǔ)角性質(zhì)求出∠A′DA,再根據(jù)三角形外角性質(zhì)即可求解.【詳解】解:根據(jù)折疊可知∠A′=∠A,∵∠1=70°,∴∠A′DA=180°-∠1=110°,∴根據(jù)三角形外角∠A′=∠2-∠A′DA=152°-110°=42°,∴∠A=42°.故選B.【考點(diǎn)】本題考查折疊性質(zhì),鄰補(bǔ)角性質(zhì),三角形外角性質(zhì),掌握折疊性質(zhì),鄰補(bǔ)角性質(zhì),三角形外角性質(zhì)是解題關(guān)鍵.6、D【解析】【分析】根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計(jì)算即可.【詳解】∵a∥b,∴∠4=∠1=60°,∴∠3=180°-∠4-∠2=80°故選:D.【考點(diǎn)】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.7、B【解析】【分析】利用三角形外角的性質(zhì),得到∠ACD與∠ABD的關(guān)系,然后用角平分線的性質(zhì)得到角相等的關(guān)系,代入計(jì)算即可得到答案.【詳解】解:延長(zhǎng)DC,與AB交于點(diǎn)E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點(diǎn)】本題綜合考查角平分線的性質(zhì)、三角形外角的性質(zhì)、三角形內(nèi)角和等知識(shí)點(diǎn).解題的關(guān)鍵是熟練的運(yùn)用所學(xué)性質(zhì)去求解.8、B【解析】【分析】先利用三角形外角性質(zhì)得到∠FDE=∠C+∠CED=140°,然后根據(jù)平行線的性質(zhì)得到∠BFA的度數(shù).【詳解】,∵,∴.故選B.【考點(diǎn)】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.二、填空題1、15【解析】【分析】根據(jù)三角形內(nèi)角和定理得出∠ACB=60°,∠DEF=45°,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到∠CEF=∠ACB=60°,根據(jù)角的和差求解即可.【詳解】解:在△ABC中,∵,,∴∠ACB=60°.在△DEF中,∵∠EDF=90°,,∴∠DEF=45°.又∵∥,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF-∠DEF=60°-45°=15°.故答案為:15.【考點(diǎn)】本題考查三角形內(nèi)角和定理及平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】作FH垂直于FE,交AC于點(diǎn)H,可證得,由對(duì)應(yīng)邊、對(duì)應(yīng)角相等可得出,進(jìn)而可求出,則.【詳解】作FH垂直于FE,交AC于點(diǎn)H,∵又∵,∴∵,F(xiàn)A=CF∴∴FH=FE∵∵∴又∵DF=DF∴∴∵∴∵∴∴故答案為:.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),全等三角形的判定及其性質(zhì),作輔助線HF垂直于FE是解題的關(guān)鍵.3、假【解析】【分析】由正確的題設(shè)得出正確的結(jié)論是真命題,由正確的題設(shè)不能得出正確結(jié)論是假命題,判定此命題的正誤即可得到答案.【詳解】解:∵當(dāng)兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等,∴兩條直線被第三條直線所截,內(nèi)錯(cuò)角有相等或不相等兩種情況∴原命題錯(cuò)誤,是假命題,故答案為假.【考點(diǎn)】本題考查了判斷命題的真假的知識(shí),解題的關(guān)鍵是根據(jù)命題作出正確的判斷,必要時(shí)可以舉出反例.4、∠FAD=∠FBC(答案不唯一)【解析】【詳解】根據(jù)同位角相等,兩直線平行,可填∠FAD=∠FBC;根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可填∠ADB=∠DBC;根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行,可填∠DAB+∠ABC=180°.故答案為:∠FAD=∠FBC;或∠ADB=∠DBC;或∠DAB+∠ABC=180°.5、(1)、(4).【解析】【分析】根據(jù)所學(xué)公理和性質(zhì)解答即可.【詳解】解:(1)兩點(diǎn)之間的所有連線中,線段最短,故本說(shuō)法正確;(2)相等的角不一定是對(duì)頂角,但對(duì)頂角相等,故本說(shuō)法錯(cuò)誤;(3)應(yīng)為過(guò)直線外一點(diǎn)有且僅有一條直線與已知直線平行,故本說(shuō)法錯(cuò)誤;(4)長(zhǎng)方體是四棱柱,正確.故答案為(1)、(4).【考點(diǎn)】本題是對(duì)數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)性的考查,記憶數(shù)學(xué)公理、性質(zhì)概念等一定要做的嚴(yán)謹(jǐn).6、銳角三角形是等邊三角形【解析】【分析】交換題目中的題設(shè)和結(jié)論即可.【詳解】解:原命題“等邊三角形是銳角三角形”的條件是“一個(gè)三角形是等邊三角形”,結(jié)論是“這個(gè)三角形是銳角三角形”,互換條件和結(jié)論可得到逆命題“如果一個(gè)三角形是銳角三角形,那么這個(gè)三角形是等邊三角形”.簡(jiǎn)化為“銳角三角形是等邊三角形”,故答案為:銳角三角形是等邊三角形.【考點(diǎn)】本題考查了命題與逆命題,能準(zhǔn)確找到命題中的題設(shè)和結(jié)論是解題的關(guān)鍵.7、45°##45°【解析】【分析】延長(zhǎng)CH交AB于點(diǎn)F,銳角三角形三條高交于一點(diǎn),所以CF⊥AB,再根據(jù)三角形內(nèi)角和定理得出答案.【詳解】解:延長(zhǎng)CH交AB于點(diǎn)F,在△ABC中,三邊的高交于一點(diǎn),所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三內(nèi)角之和為180°,∴∠CHD=45°,故答案為:45°.【考點(diǎn)】本題考查三角形中,三條邊的高交于一點(diǎn),且內(nèi)角和為180°.三、解答題1、見(jiàn)解析【解析】【分析】根據(jù),得到∠A=∠C,然后推出AF=CE,即可證明△ABF≌△CDE得到∠AFB=∠CED,則.【詳解】解:∵,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,平行線的性質(zhì)與判定,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.2、(1)65°;(2)25°.【解析】【分析】(1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°﹣∠A=50°,由鄰補(bǔ)角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=∠CBD=65°;(2)先根據(jù)直角三角形兩銳角互余的性質(zhì)得出∠CEB=90°﹣65°=25°,再根據(jù)平行線的性質(zhì)即可求出∠F=∠CEB=25°.【詳解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分線,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,直角三角形兩銳角互余的性質(zhì),平行線的性質(zhì),鄰補(bǔ)角定義,角平分線定義.掌握各定義與性質(zhì)是解題的關(guān)鍵.3、證法1:平角等于180°;∠1+∠2+∠3=180°;證法二見(jiàn)解析【解析】【詳解】試題分析:證法1:根據(jù)平角的定義得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根據(jù)三角形內(nèi)角和定理和角的和差關(guān)系即可得到結(jié)論;證法2:要求證∠BAE+∠CBF+∠ACD=360°,根據(jù)三角形外角性質(zhì)得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,則∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根據(jù)三角形內(nèi)角和定理即可得到結(jié)論.試題解析:證法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.證法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.4、證明見(jiàn)解析【解析】【分析】根據(jù)同位角相等,兩直線平行可得AE//BF,進(jìn)而可得∠E=∠2,由CE//DF可得∠F=∠2,最后根據(jù)等量代換即可證明結(jié)論.【詳解】∵,∴,∴.∵CE//DF,∴.∴.【考點(diǎn)】本題考查了平行線的判定與性質(zhì),熟練掌握平行線的判定定理與性質(zhì)定理是解題的關(guān)鍵.5、同旁內(nèi)角互補(bǔ)兩直線平行;AB∥CD;同位角相等,兩直線平行;兩條直線都與第三條直線平行,則這兩直線也互相平行;∠AFE,∠EFC;兩直線平行,內(nèi)錯(cuò)角相等;∠A,∠C+∠AFC.【解析】【分析】根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行可得CD∥EF,根據(jù)∠A=∠2利用同位角相等,兩直線平行,AB∥CD,根據(jù)平行同一直線的兩條直線平行可得AB∥CD∥EF根據(jù)平行線的性質(zhì)可得∠A=∠AFE
,∠C=∠EFC,根據(jù)角的和可得∠AFE=∠EFC+∠AFC即可.【詳解】證明:∵∠1+∠AFE=180°∴CD∥EF(同旁內(nèi)角互補(bǔ),兩直線平行),∵∠A=∠2,∴(AB∥CD)(同位角相等,兩直線平行),∴AB∥CD∥EF(兩條直線都與第三條直線平行,則這兩直線也互相平行)∴∠A=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024數(shù)據(jù)拯救良好做法指導(dǎo)原則
- 綜合檢測(cè)(基礎(chǔ)篇)-高一數(shù)學(xué)知識(shí)梳理考點(diǎn)(人教B版)
- 二人合租房屋合同
- 重慶市萬(wàn)州區(qū)2024-2025學(xué)年度八年級(jí)下學(xué)期期末質(zhì)量監(jiān)測(cè)物理試題(含答案)
- 重難點(diǎn)08 完形填空說(shuō)明文-2024年高考英語(yǔ)復(fù)習(xí)專練(新高考專用)解析版
- 智能城市水資源管理考核試卷
- 內(nèi)河港口物流設(shè)備選型與能源消耗評(píng)估考核試卷
- 汽車內(nèi)飾件化學(xué)纖維的耐磨性評(píng)估考核試卷
- 醫(yī)院護(hù)理模擬練習(xí)題(含答案解析)
- 課堂情境創(chuàng)設(shè)與學(xué)習(xí)效果關(guān)聯(lián)研究考核試卷
- 中國(guó)吸管機(jī)行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告2024-2034版
- 接受宴請(qǐng)違紀(jì)檢討書(shū)(合集4篇)
- (高清版)JTGT 3671-2021 公路交通安全設(shè)施施工技術(shù)規(guī)范
- 場(chǎng)所安全控制程序范文(三篇)
- 腦梗死康復(fù)診療規(guī)范
- (正式版)SHT 3158-2024 石油化工管殼式余熱鍋爐
- 結(jié)核病防治管理辦法的課件
- 刑事特情工作細(xì)則
- 胖東來(lái)內(nèi)部管理手冊(cè)
- 利用人工智能技術(shù)提升醫(yī)院臨床決策
- 光伏運(yùn)維合同
評(píng)論
0/150
提交評(píng)論