




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省宜都市中考數(shù)學真題分類(實數(shù))匯編章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、已知、為實數(shù),且+4=4b,則的值是()A. B. C.2 D.﹣22、如圖,點P是以A為圓心,AB為半徑的圓弧與數(shù)軸的交點,則數(shù)軸上點P表示的實數(shù)是(
)A.-2 B.-2.2 C.- D.-+13、實數(shù),,在數(shù)軸上的對應點的位置如圖所示,則正確的結(jié)論是(
)A. B. C. D.4、如圖為5×5的正方形格子,其中所有線段的端點都在格點上,長度是無理數(shù)的線段有(
)A.b、c、d B.c、d C.a(chǎn)、d D.b、c5、計算的結(jié)果為(
)A.7 B.-5 C.5 D.-76、下列說法中正確的有(
)個.①負數(shù)沒有平方根,但負數(shù)有立方根.②的平方根是,的立方根是.③如果,那么x=-2.
④算術平方根等于立方根的數(shù)只有1.A.1 B.2 C.3 D.47、在實數(shù):3.14159,,1.010010001,,,中,無理數(shù)有(
)A.1個 B.2個 C.3個 D.4個8、實數(shù)、在數(shù)軸上的位置如圖所示,化簡的結(jié)果是().A. B.0 C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在實數(shù),,4,,,中,設有a個有理數(shù),b個無理數(shù),則________.2、計算:______.3、如圖所示,直徑為個單位長度的圓從原點沿著數(shù)軸負半軸方向無滑動的滾動一周到達點,則點表示的數(shù)是_________.4、對于實數(shù),定義運算.若,則_____.5、若a<1,化簡=___.6、7是__________的算術平方根.7、比較大小,(填>或<號)_____;_________三、解答題(7小題,每小題10分,共計70分)1、如圖,用一個面積為8的正方形和四個相同的長方形拼成一個面積為27的正方形圖案,求長方形的周長.2、計算:(1);
(2)3、已知二次根式–(1)求使得該二次根式有意義的x的取值范圍;(2)已知–為最簡二次根式,且與為同類二次根式,求x的值,并求出這兩個二次根式的積.4、計算:(1)(2)5、計算:(1);(2).6、在解決問題“已知,求的值”時,小明是這樣分析與解答的:∵,∴∴,即∴∴.請你根據(jù)小明的分析過程,解決如下問題:(1)化簡:;(2)若,求的值.7、設、是任意兩個有理數(shù),規(guī)定與之間的一種運算“”為:(1)求的值;(2)若,求的值.-參考答案-一、單選題1、C【解析】【分析】已知等式整理后,利用非負數(shù)的性質(zhì)求出與的值,利用同底數(shù)冪的乘法及積的乘方運算法則變形后,代入計算即可求出值.【詳解】已知等式整理得:=0,∴a,b=2,即ab=1,則原式==2,故選:C.【考點】本題考查了實數(shù)的非負性,同底數(shù)冪的乘法,積的乘方,活用實數(shù)的非負性,確定字母的值,逆用同底數(shù)冪的乘法,積的乘方,進行巧妙的算式變形,是解題的關鍵.2、D【解析】【分析】在三角形AOB中,利用勾股定理求出AB的長,即可確定出AP的長,得到P表示的實數(shù).【詳解】在Rt△AOB中,OA=1,OB=3,根據(jù)勾股定理得:AB==,∴AP=AB=,∴OP=AP-OA=-1,則P表示的實數(shù)為-+1.故選D.【考點】本題考查了勾股定理,以及實數(shù)與數(shù)軸,熟練掌握勾股定理是解題的關鍵.3、B【解析】【分析】觀察數(shù)軸得到實數(shù),,的取值范圍,根據(jù)實數(shù)的運算法則進行判斷即可.【詳解】∵,∴,故A選項錯誤;數(shù)軸上表示的點在表示的點的左側(cè),故B選項正確;∵,,∴,故C選項錯誤;∵,,,∴,故D選項錯誤.故選:B.【考點】主要考查數(shù)軸、絕對值以及實數(shù)及其運算.觀察數(shù)軸是解題的關鍵.4、D【解析】【分析】數(shù)網(wǎng)格可得到a,在網(wǎng)格中構造直角三角形,利用勾股定理兩直角邊的平方和等于斜邊的平方,依次求出b、c、d,再根據(jù)無理數(shù)定義判斷即可.【詳解】由圖可知:,,,,因此b、c為無理數(shù).故選:D.【考點】本題考查勾股定理、無理數(shù)的定義,掌握勾股定理求第三邊的知識和無理數(shù)的定義為解題關鍵.5、C【解析】【分析】化簡二次根式,然后先算小括號里面的減法,再算括號外面的除法.【詳解】解:故選:C【考點】本題考查二次根式的混合運算,理解二次根式的性質(zhì),掌握二次根式混合運算的運算順序和計算法則是解題的關鍵.6、A【解析】【分析】根據(jù)平方根、立方根、乘方的定義以及性質(zhì)逐一進行分析判斷即可.【詳解】①負數(shù)沒有平方根,但負數(shù)有立方根,正確;②的平方根是,的立方根是,故②錯誤;③任何實數(shù)的平方都不可能為負數(shù),故③錯誤;④算術平方根等于立方根的數(shù)有0、1,故④錯誤,所以正確的有1個,故選A.【考點】本題考查了平方根、立方根,熟練掌握平方根及立方根的定義是解題的關鍵.7、B【解析】【分析】無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】解:,∴在實數(shù):3.14159,,1.010010001…,π,中,無理數(shù)有1.010010001…,π,共2個.故選:B.【考點】本題主要考查了無理數(shù)的定義,掌握無理數(shù)的定義是解題的關鍵,其中初中范圍內(nèi)學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、A【解析】【分析】根據(jù)實數(shù)a和b在數(shù)軸上的位置得出其取值范圍,再利用二次根式的性質(zhì)和絕對值的性質(zhì)即可求出答案.【詳解】解:由數(shù)軸可知-2<a<-1,1<b<2,∴a+1<0,b-1>0,a-b<0,∴===-2故選A.【考點】此題主要考查了實數(shù)與數(shù)軸之間的對應關系,以及二次根式的性質(zhì),要求學生正確根據(jù)數(shù)在數(shù)軸上的位置判斷數(shù)的符號以及絕對值的大小,再根據(jù)運算法則進行判斷.二、填空題1、2【解析】【分析】由題意先根據(jù)有理數(shù)和無理數(shù)的定義得出a、b的值,進而求出的值.【詳解】解:,4,,共有4個有理數(shù),即,,共有2個無理數(shù),即,所以.故答案為:2.【考點】本題考查有理數(shù)和無理數(shù)的定義以及算術平方根的運算,熟練掌握相關定義與運算法則是解題的關鍵.2、【解析】【分析】根據(jù)立方根和算數(shù)平方根的性質(zhì)計算,即可得到答案.【詳解】故答案為:.【考點】本題考查了立方根和算術平方根的知識;解題的關鍵是熟練掌握立方根、算術平方根的性質(zhì),從而完成求解.3、-【解析】【分析】直接利用圓的周長公式得出圓的周長,再利用對應數(shù)字性質(zhì)得出答案.【詳解】由題意可得:圓的周長為π,∵直徑為單位1的硬幣從原點處沿著數(shù)軸負半軸無滑動的逆時針滾動一周到達A點,∴A點表示的數(shù)是:-π.故答案為:-π.【考點】此題考查了數(shù)軸的特點及圓的周長公式,正確得出圓的周長是解題的關鍵.4、【解析】【分析】根據(jù)給出的新定義分別求出與的值,根據(jù)得出關于a的一元一次方程,求解即可.【詳解】解:∵,∴,,∵,∴,解得,故答案為:.【考點】本題考查解一元一次方程、新定義下實數(shù)的運算等內(nèi)容,理解題干中給出的新定義是解題的關鍵.5、﹣a【解析】【分析】根據(jù)a的范圍,a﹣1<0,化簡二次根式即可.【詳解】解:∵a<1,∴a﹣1<0,=|a﹣1|﹣1=﹣(a﹣1)﹣1=﹣a+1﹣1=﹣a.故答案為:﹣a.【點評】本題考查了二次根式的性質(zhì)與化簡,對于的化簡,應先將其轉(zhuǎn)化為絕對值形式,再去絕對值符號,即.6、49【解析】【分析】根據(jù)算術平方根的定義即可解答.【詳解】解:因為=7,所以7是49的算術平方根.故答案為:49【考點】本題主要考查的是算術平方根,屬于基礎題,要求學生認真讀題,熟記概念.7、
>
>【解析】【分析】根據(jù)二次根式比較大小的方法:作差法及平方法進行求解即可.【詳解】解:,18>12,;,,;故答案為>;>.【考點】本題主要考查二次根式的大小比較,熟練掌握二次根式的大小比較的方法是解題的關鍵.三、解答題1、【解析】【分析】根據(jù)圖形先求出大、小正方形的邊長,結(jié)合圖形求得長方形的長和寬,根據(jù)矩形的周長公式解答即可.【詳解】依題意,得:小正方形的邊長為,大正方形的邊長為,∴長方形寬為:,長方形的長為:,∴長方形的周長為:.【考點】本題考查了二次根式的應用,涉及了正方形的面積、邊長,矩形的長與寬,準確識圖,根據(jù)圖形找到長方形的長與寬與已知正方形的邊長的數(shù)量關系是解題的關鍵.2、(1);(2)【解析】【分析】(1)根據(jù)乘法分配律相乘,再化簡二次根式即可;(2)先用完全平方公式進行計算,再合并即可.【詳解】解:(1)=
==
(2)==【考點】本題考查了二次根式的運算,解題關鍵是熟練運用二次根式運算法則和乘法公式進行準確計算.3、(1)x≥2;(2)x=12,–5.【解析】【分析】(1)根據(jù)二次根式有意義的條件求解即可;(2)先把化為最簡二次根式,再根據(jù)同類二次根式的概念求解即可.【詳解】解:(1)要使–有意義,必須x–2≥0,即x≥2,所以使得該二次根式有意義的x的取值范圍是x≥2;(2)∵=,所以x–2=10,解得:x=12,這兩個二次根式的積為:–×=–5.4、(1);(2).【解析】【分析】(1)先計算二次根式的乘法,再計算加、減;(2)利用乘法分配律和平方差公式去括號,再相加、減即可.(1)解:;(2)解:.【考點】考查了二次根式的混合運算.在二次根式的混合運算中,結(jié)合題目特點,靈活運用二次根式的性質(zhì)是解題的關鍵,混淆完全平方公式及平方差公式是解題的易錯點.5、(1)(2)【解析】【分析】分別求立方根、算術平方根,再進行加減運算;分別進行冪的運算、絕對值的化簡、整式乘法,再進行加減運算;(1)解:,,;(2),,.【考點】本題考查實數(shù)的運算,涉及求立方根、算術平方根、冪的運算、絕對值的化簡、整式乘法等的計算,解題關鍵熟練掌握運算法則.6、(1);(2)2.【解析】【分析】(1)根據(jù)分母有理化的方法可以解答本題;(2)根據(jù)題目中的例子可以靈活變形解答本題.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國茶葉罐行業(yè)市場深度研究及投資戰(zhàn)略規(guī)劃報告
- 2025至2030年中國成品油零售行業(yè)市場發(fā)展現(xiàn)狀及投資方向研究報告
- 工地柴油批發(fā)銷售合同范本
- 文化企業(yè)引進合同協(xié)議模板
- 與樓房拍照兼職合同范本
- 電機功率器件采購合同范本
- 公益捐款合同范本模板模板
- 2025年安徽省合肥四十二中湖畔分校中考化學模擬試卷含解析
- 廣東省揭陽市揭東區(qū)2024-2025學年七年級下學期期末生物試題(含答案)
- 高考化學一輪復習-答題技巧與模板構建:限制條件同分異構體的書寫(原卷版+解析版)
- 護理飲食與營養(yǎng)課件
- 化妝品外包生產(chǎn)管理制度
- 成人重癥患者顱內(nèi)壓增高防控護理專家共識
- 智能建造發(fā)展現(xiàn)狀與技術創(chuàng)新趨勢
- 【聊城】2025年山東聊城科技職業(yè)學院(籌)公開招聘工作人員60人筆試歷年典型考題及考點剖析附帶答案詳解
- 2024年國家中醫(yī)藥管理局直屬事業(yè)單位招聘真題
- vda6.3vda6.5考試試題及答案
- T/CNFMA A003-2021鋸材四面刨光生產(chǎn)線技術要求
- 2025-2030芯片鍵合材料行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 建筑設計院各部門職責及架構
- 《2025年CSCO腎癌診療指南》解讀
評論
0/150
提交評論