




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.2、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3、已知⊙O的半徑為4,,則點(diǎn)A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定4、在一個不透明的口袋中裝有3張完全相同的卡片,卡片上面分別寫有數(shù)字,0,2,從中隨機(jī)抽出兩張不同卡片,則下列判斷正確的是()A.?dāng)?shù)字之和是0的概率為0 B.?dāng)?shù)字之和是正數(shù)的概率為C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為 D.?dāng)?shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率相同5、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm7、將等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.1808、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點(diǎn)C為優(yōu)弧上的一個動點(diǎn),則面積的最大值是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關(guān)系是__________.2、如圖,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)3、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點(diǎn)P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點(diǎn)D是CB邊上的動點(diǎn),連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.4、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機(jī)摸出兩個球,則摸到兩個都是紅球的概率是_______.5、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點(diǎn)到AB的距離=______.6、在菱形ABCD中,AB=6,E為AB的中點(diǎn),連結(jié)AC,DE交于點(diǎn)F,連結(jié)BF.記∠ABC=α(0°<α<180°).(1)當(dāng)α=60°時,則AF的長是_____;(2)當(dāng)α在變化過程中,BF的取值范圍是_____.7、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是______.三、解答題(7小題,每小題0分,共計0分)1、如圖,在⊙O中,弦AC與弦BD交于點(diǎn)P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.2、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個問題:如圖1,在平面直角坐標(biāo)系xOy中,OA經(jīng)過坐標(biāo)原點(diǎn)O,并與兩坐標(biāo)軸分別交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為,點(diǎn)D在上,且,求OA的半徑和圓心A的坐標(biāo).元元的做法如下,請你幫忙補(bǔ)全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標(biāo)為(④)的半徑為⑤3、如圖,和中,,,,連接,點(diǎn)M,N,P分別是的中點(diǎn).(1)請你判斷的形狀,并證明你的結(jié)論.(2)將繞點(diǎn)A旋轉(zhuǎn),若,請直接寫出周長的最大值與最小值.4、隨著課后服務(wù)的全面展開,某校組織了豐富多彩的社團(tuán)活動.炯炯和露露分別打算從以下四個社團(tuán):A.快樂足球,B.?dāng)?shù)學(xué)歷史,C.文學(xué)欣賞,D.棋藝鑒賞中,選擇一個社團(tuán)參加.(1)炯炯選擇數(shù)學(xué)歷史的概率為______.(2)用畫樹狀圖或列表的方法求炯炯和露露選擇同一個社團(tuán)的概率.5、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學(xué)的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學(xué)過的圖形變換,在圖2,3的方格紙中設(shè)計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個三角形互不重疊,不必涂陰影;②圖2中所設(shè)計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.6、如圖,已知為的直徑,切于點(diǎn)C,交的延長線于點(diǎn)D,且.(1)求的大小;(2)若,求的長.7、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.-參考答案-一、單選題1、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點(diǎn)睛】本題考查了圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì),掌握圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì)是解題的關(guān)鍵.2、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點(diǎn)睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點(diǎn)旋轉(zhuǎn)后能與自身重合.3、C【分析】根據(jù)⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5,∴d>r,∴點(diǎn)A在⊙O外,故選:C.【點(diǎn)睛】本題主要考查點(diǎn)與圓的位置關(guān)系,點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:①點(diǎn)P在圓外?d>r;②點(diǎn)P在圓上?d=r;③點(diǎn)P在圓內(nèi)?d<r.4、A【分析】列樹狀圖,得到共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,依次判斷即可.【詳解】解:列樹狀圖如下:共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,A.數(shù)字之和是0的概率為0,故該項符合題意;B.數(shù)字之和是正數(shù)的概率為,故該項不符合題意;C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為,故該項不符合題意;D.數(shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率不相同,故該項不符合題意;故選:A.【點(diǎn)睛】此題考查了列樹狀圖求事件的概率,概率的計算公式,正確列出樹狀圖解答是解題的關(guān)鍵.5、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點(diǎn)睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個圖形繞某點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關(guān)鍵.6、B【分析】如圖所示,過C作CD⊥AB,交AB于點(diǎn)D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點(diǎn)D,在Rt△ABC中,AC=3cm,BC=4cm,根據(jù)勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點(diǎn)睛】此題考查了切線的性質(zhì),勾股定理,以及三角形面積求法,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.7、C【分析】根據(jù)旋轉(zhuǎn)對稱圖形的概念(把一個圖形繞著一個定點(diǎn)旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角),找到旋轉(zhuǎn)角,求出其度數(shù).【詳解】解:等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,因而繞其中心旋轉(zhuǎn)的最小度數(shù)是=120°.故選C.【點(diǎn)睛】本題考查了根據(jù)旋轉(zhuǎn)對稱性,掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.8、C【分析】如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點(diǎn)C作CT⊥AB于點(diǎn)T,過點(diǎn)O作OH⊥AB于點(diǎn)H,交⊙O于點(diǎn)K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點(diǎn)睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識,解題的關(guān)鍵是求出CT的最大值,屬于中考??碱}型.二、填空題1、相切【分析】過點(diǎn)C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關(guān)系是相切.【詳解】解:過點(diǎn)C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關(guān)系是相切.故答案為:相切.【點(diǎn)睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關(guān)鍵.2、【分析】先求出A、B、C坐標(biāo),再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,∴當(dāng)時,,B點(diǎn)坐標(biāo)為(0,1)當(dāng)時,,A點(diǎn)坐標(biāo)為∴∵作的外接圓,∴線段AB中點(diǎn)C的坐標(biāo)為,∴三角形BOC是等邊三角形∴∵C的坐標(biāo)為∴∴故答案為:【點(diǎn)睛】本題主要考查了一次函數(shù)的綜合運(yùn)用,求扇形面積.用已知點(diǎn)的坐標(biāo)表示相應(yīng)的線段是解題的關(guān)鍵.3、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.4、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點(diǎn)睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.5、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點(diǎn),然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點(diǎn),由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點(diǎn)到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點(diǎn),∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點(diǎn)睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.6、2【分析】(1)證明是等邊三角形,,進(jìn)而即可求得;(2)過點(diǎn)作,交于點(diǎn),以為圓心長度為半徑作半圓,交的延長延長線于點(diǎn),證明在半圓上,進(jìn)而即可求得范圍.【詳解】(1)如圖,四邊形是菱形,是等邊三角形是的中點(diǎn)即故答案為:2(2)如圖,過點(diǎn)作,交于點(diǎn),以為圓心長度為半徑作半圓,交的延長延長線于點(diǎn),四邊形是菱形,在以為圓心長度為半徑的圓上,又∠ABC=α(0°<α<180°)在半圓上,最小值為最大值為故答案為:【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與判定,點(diǎn)與圓的位置關(guān)系求最值問題,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.7、(3,4)【分析】關(guān)于原點(diǎn)對稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(diǎn)(-3,-4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(3,4),故答案為:(3,4).【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于原點(diǎn)對稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).三、解答題1、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據(jù)圓周角定理可得,然后根據(jù)等腰三角形的判定即可得證;(2)連接,并延長交于點(diǎn),連接,過作于點(diǎn),先根據(jù)線段垂直平分線的判定與性質(zhì)可得,再根據(jù)線段的和差、勾股定理可得,然后根據(jù)直角三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點(diǎn),連接,過作于點(diǎn),,,是的垂直平分線,,,,,在和中,,,,設(shè),則,在中,,即,解得,在中,,即的半徑為.【點(diǎn)睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質(zhì)、勾股定理、垂徑定理等知識點(diǎn),較難的是題(2),通過作輔助線,構(gòu)造全等三角形和直角三角形是解題關(guān)鍵.2、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標(biāo)為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點(diǎn)睛】此題考查了圓的知識,垂徑定理、圓周角定理,熟記各定理知識并綜合應(yīng)用是解題的關(guān)鍵.3、(1)是等腰直角三角形,證明見解析(2)周長最小值為。最大值為【分析】(1)連接BD,CE,根據(jù)SAS證明得BD=CE,根據(jù)三角形中位線性質(zhì)可證明PM=PN;,進(jìn)而可得結(jié)論;(2)當(dāng)BD最小時即點(diǎn)D在AB上,此時周長最小,當(dāng)點(diǎn)D在BA的延長線上時,BD最大,此時周長最大,均為,求出BD的長即可解決問題.(1)連接BD,CE,如圖,∵,,,∴∴∴∴BD=CE,∵點(diǎn)M,N,P分別是的中點(diǎn)∴//,,PN//BD,PN=BD∴PM=PN,∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°∴∴是等腰直角三角形;(2)由(1)知,是等腰直角三角形∴∴的周長為∵∴的周長為當(dāng)BD最小時即點(diǎn)D在AB上,此時周長最小,∵AB=8,AD=3∴BD的最小值為AB-AD=8-3=5∴周長最小為當(dāng)點(diǎn)D在BA的延長線上時,BD最大,此時周長最大,∴BD=AB+AD=8+3=11∴周長最大為【點(diǎn)睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),三角形中位線定理的應(yīng)用等知識,熟練掌握相關(guān)知識是解答本題的關(guān)鍵.4、(1)(2)炯炯和露露選擇同一個社團(tuán)的概率為【分析】(1)直接由概率公式求解即可;(2)畫樹狀圖,共有16種等可能的結(jié)果,其中炯炯和露露選同一個社團(tuán)的有4種結(jié)果,再由概率公式求解即可.(1)∵共有A.快樂足球,B.?dāng)?shù)學(xué)歷史,C.文學(xué)欣賞,D.棋藝鑒賞四個社團(tuán),數(shù)學(xué)歷史是其中一個社團(tuán),∴炯炯選擇數(shù)學(xué)歷史的概率為,故答案為:;(2)畫樹狀圖如下:共有16種等可能的結(jié)果,其中炯炯和露露選同一個社團(tuán)的有4種結(jié)果,∴P(炯炯和露露選擇同一個社團(tuán))=【點(diǎn)睛】此題考查了用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個三角形不重疊,是軸對稱圖形;②所設(shè)計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點(diǎn)睛】本題考查利用旋轉(zhuǎn)或軸對稱設(shè)計方案,關(guān)鍵是理解旋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院醫(yī)輔筆試題及答案
- 彈唱訓(xùn)練考試題及答案
- 煤礦倉管員考試題及答案
- 2025年錫及錫合金材項目合作計劃書
- 2025年口腔科設(shè)備器具項目建議書
- 2025年超強(qiáng)吸水聚合物項目發(fā)展計劃
- 2025年嬰幼兒奶粉行業(yè)研究報告及未來發(fā)展趨勢預(yù)測
- 2025年汽車整車行業(yè)研究報告及未來發(fā)展趨勢預(yù)測
- 2025年塑膠件行業(yè)研究報告及未來發(fā)展趨勢預(yù)測
- 2025年紡織纖維色漿項目合作計劃書
- 供排水調(diào)度工公司招聘筆試題庫及答案
- 政府隱性債務(wù)管理課件
- 中國人力資源管理軟件行業(yè)市場深度分析及投資策略咨詢報告
- 戀愛行為學(xué)課件
- 食用菌菌棒公司管理制度
- 社保費(fèi)培訓(xùn)課件稅務(wù)局
- 《虞美人》(李煜)-課件
- DBJ33-T 1349-2025 《既有多層住宅加裝電梯技術(shù)標(biāo)準(zhǔn)》
- 【中考真題】2025年福建中考數(shù)學(xué)真題試卷(含解析)
- 護(hù)士分層級管理課件
- 八一參觀部隊活動方案
評論
0/150
提交評論