




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省江陰市中考數(shù)學(xué)真題分類(勾股定理)匯編難點(diǎn)解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點(diǎn)F,則BF的長為(
)A. B. C. D.2、如圖,將△ABC放在正方形網(wǎng)格圖中(圖中每個小正方形的邊長均為1),點(diǎn)A,B,C恰好在網(wǎng)格圖中的格點(diǎn)上,那么△ABC中BC邊上的高是(
)A. B. C. D.3、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(
)A.50cm B.120cm C.140cm D.100cm4、如圖,在7×7的正方形網(wǎng)格中,每個小正方形的邊長為1,畫一條線段AB=,使點(diǎn)A,B在小正方形的頂點(diǎn)上,設(shè)AB與網(wǎng)格線相交所成的銳角為α,則不同角度的α有(
)A.1種 B.2種 C.3種 D.4種5、如圖,正方形的邊長為10,,,連接,則線段的長為(
)A. B. C. D.6、如圖,正方體盒子的棱長為2,M為BC的中點(diǎn),則一只螞蟻從A點(diǎn)沿盒子的表面爬行到M點(diǎn)的最短距離為(
)A. B.C. D.7、如圖是一個三級臺階,它的每一級的長、寬和高分別為9、3和1,A和B是這個臺階兩個相對的端點(diǎn),A點(diǎn)有一只螞蟻,想到B點(diǎn)去吃可口的食物.則這只螞蟻沿著臺階面爬行的最短路程是(
)A.6 B.8 C.9 D.15第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時間后,到達(dá)位于燈塔P的北偏東方向上的B處,此時B處與燈塔P的距離為___________海里(結(jié)果保留根號).2、如圖,在△ABC中,AB=10,BC=9,AC=17,則BC邊上的高為_______.3、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫半圓,,,則_________.4、對角線互相垂直的四邊形叫做“垂美”四邊形,現(xiàn)有如圖所示的“垂美”四邊形ABCD,對角線AC、BD交于點(diǎn)O.若AD=3,BC=5,則____________.5、我國古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問:葭長幾何?(1丈=10尺).意思是:有一個長方體池子,底面是邊長為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒有折斷),剛好貼在池邊上,問:蘆葦長多少尺?答:蘆葦長____________尺.6、如圖,臺風(fēng)過后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.7、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點(diǎn)E在BC上,將△ABC沿AE折疊,使點(diǎn)B落在AC邊上的點(diǎn)B′處,則BE的長為________________.8、如圖,鐵路MN和公路PQ在O點(diǎn)處交匯,公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,如果火車行駛時,周圍兩百米以內(nèi)會受到噪音的影響,那么火車在鐵路MN上沿ON方向,以144千米/時的速度行駛時,A處受噪音影響的時間是_______s三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點(diǎn)D為BC的中點(diǎn),.(1)求證:△ABC≌△DEB.(2)連結(jié)AE,若BC=4,直接寫出AE的長.2、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.3、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時給出的,它標(biāo)志著中國古代的數(shù)學(xué)成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運(yùn)用此圖形證明勾股定理:a2+b2=c2.4、如圖②,它可以看作是由邊長為a、b、c的兩個直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點(diǎn)在同一條直線上,(1)請從面積出發(fā)寫出一個表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個圖形中面積關(guān)系滿足的有_______個.(3)如圖⑥,直角三角形的兩直角邊長分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.5、如圖所示,在中,,,,為邊上的中點(diǎn).(1)求、的長度;(2)將折疊,使與重合,得折痕;求、的長度.6、勾股定理的證明方法是多樣的,其中“面積法”是常用的方法.小麗發(fā)現(xiàn):當(dāng)四個全等的直角三角形如圖擺放時,可以用“面積法”來證明勾股定理.請寫出勾股定理的內(nèi)容,并利用給定的圖形進(jìn)行證明.7、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.-參考答案-一、單選題1、B【解析】【分析】由已知證得,進(jìn)而確定三個內(nèi)角的大小,求得,進(jìn)而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì),勾股定理;熟練掌握相關(guān)知識是解題的關(guān)鍵.2、A【解析】【詳解】先用勾股定理耱出三角形的三邊,再根據(jù)勾股定理的逆定理判斷出△ABC是直角三角形,最后設(shè)BC邊上的高為h,利用三角形面積公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,設(shè)BC邊上的高為h,則,∴.故選A.點(diǎn)睛:本題主要考查勾股理及其逆定理.借助網(wǎng)格利用勾股定理求邊長,并用勾股定理的逆定理來判斷三角形是否是直角三角形是解題的關(guān)鍵.3、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點(diǎn)】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.4、C【解析】【詳解】如圖,(1)當(dāng)AB=時,AB與網(wǎng)格線相交所成的兩個銳角:∠=45°;(2)當(dāng)AB=時,AB與網(wǎng)格線相交所成的銳角∠有2個不同的角度;綜上所述,AB與網(wǎng)格線相交所成的銳角的不同角度有3個.故選C.5、B【解析】【分析】延長DH交AG于點(diǎn)E,利用SSS證出△AGB≌△CHD,然后利用ASA證出△ADE≌△DCH,根據(jù)全等三角形的性質(zhì)求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【詳解】解:延長DH交AG于點(diǎn)E∵四邊形ABCD為正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD為直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故選B.【考點(diǎn)】此題考查是正方形的性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握正方形的性質(zhì)、全等三角形的判定及性質(zhì)和利用勾股定理解直角三角形是解決此題的關(guān)鍵.6、B【解析】【分析】先利用展開圖確定最短路線,再利用勾股定理求解即可.【詳解】解:如圖,螞蟻沿路線AM爬行時距離最短;∵正方體盒子棱長為2,M為BC的中點(diǎn),∴,∴,故選:B.【考點(diǎn)】本題考查了螞蟻爬行的最短路徑為題,涉及到了正方形的性質(zhì)、正方體的展開圖、勾股定理、兩點(diǎn)之間線段最短等知識,解題關(guān)鍵是牢記相關(guān)概念與靈活應(yīng)用.7、D【解析】【分析】此類題目只需要將其展開便可直觀的得出解題思路.將臺階展開得到的是一個矩形,螞蟻要從B點(diǎn)到A點(diǎn)的最短距離,便是矩形的對角線,利用勾股定理即可解出答案.【詳解】解:如圖,將臺階展開,因?yàn)锳C=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以螞蟻爬行的最短線路為15.故選:D.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理的應(yīng)用并能得出平面展開圖是解題的關(guān)鍵.二、填空題1、.【解析】【分析】先作PC⊥AB于點(diǎn)C,然后利用勾股定理進(jìn)行求解即可.【詳解】解:如圖,作PC⊥AB于點(diǎn)C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為用勾股定理解決問題,解決的方法就是作高線.2、8【解析】【分析】作交的延長于點(diǎn),在中,,在中,,根據(jù)列出方程即可求解.【詳解】如圖,作交的延長于點(diǎn),則即為BC邊上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案為:8.【考點(diǎn)】本題考查了勾股定理,掌握三角形的高,直角三角形是解題的關(guān)鍵.3、【解析】【分析】根據(jù)題意設(shè)直角三角形的三邊為,分別表示出,得出,進(jìn)而即可求解.【詳解】解:設(shè)直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.4、34【解析】【分析】在Rt△COB和Rt△AOB中,根據(jù)勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,進(jìn)一步得BO2+CO2+OD2+OA2=9+25,再根據(jù)AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【詳解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根據(jù)勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案為:34.【考點(diǎn)】本題考查勾股定理的應(yīng)用,熟練掌握勾股定理在實(shí)際問題中的應(yīng)用,從題中抽象出勾股定理這一數(shù)學(xué)模型是解題關(guān)鍵.5、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.6、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.7、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點(diǎn)】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.8、8【解析】【分析】過點(diǎn)A作AC⊥ON,根據(jù)題意可知AC的長與200米相比較,發(fā)現(xiàn)受到影響,然后過點(diǎn)A作AD=AB=200米,求出BD的長即可得出居民樓受噪音影響的時間.【詳解】解:如圖:過點(diǎn)A作AC⊥ON,AB=AD=200米,∵公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,∴AC=120米,當(dāng)火車到B點(diǎn)時對A處產(chǎn)生噪音影響,此時AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小時=40米/秒,∴影響時間應(yīng)是:320÷40=8秒.故答案為:8.【考點(diǎn)】本題考查勾股定理的應(yīng)用.根據(jù)題意構(gòu)建直角三角形是解題關(guān)鍵.三、解答題1、(1)見解析;(2)【解析】【分析】(1)根據(jù)平行可得∠DBE=90°,再由HL定理證明直角三角形全等即可;(2)構(gòu)造,利用矩形性質(zhì)和勾股定理即可求出AE長.【詳解】(1)∵AC∥BE,∴∠C+∠DBE=180°.∴∠DBE=180°-∠C=180°-90°=90°.∴△ABC和△DEB都是直角三角形.∵點(diǎn)D為BC的中點(diǎn),,∴AC=DB.
∵AB=DE,∴Rt△ABC≌Rt△DEB(HL).(2).過程如下:連接AE、過A點(diǎn)作AH⊥BE,∵∠C=90°,∠DBE=90°.∴,,∴AH=BC=4,,∴,在中,.【考點(diǎn)】本題主要考查了直角三角形全等的判定和勾股定理解三角形,解題關(guān)鍵是構(gòu)造直角三角形,利用用平行線間的距離處處相等得線段AH=BC,從而利用勾股定理求AE.2、△ABC為直角三角形或等腰三角形【解析】【分析】首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形.3、見解析【解析】【分析】根據(jù)大正方形的面積=小正方形的面積+4個直角三角形的面積證明即可【詳解】解:由題意得大正方形面積,小正方形面積,4個小直角三角形的面積,∵大正方形的面積=小正方形的面積+4個直角三角形的面積,∴.【考點(diǎn)】本題主要考查了勾股定理的證明,解題的關(guān)鍵在于能夠根據(jù)題意知曉大正方形的面積=小正方形的面積+4個直角三角形的面積.4、(1)(2)3(3)7.5【解析】【分析】(1)梯形的面積等于三個直角三角形的面積的和.即可得:;(2)根據(jù)勾股定理可得三個圖形中面積關(guān)系滿足的有3個;(3)根據(jù)半圓面積和勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軟件測試一歷年參考題庫含答案詳解(5套)
- 2025年資產(chǎn)評估師資格考試(資產(chǎn)評估基礎(chǔ))歷年參考題庫含答案詳解(5套)
- 癮疹病中醫(yī)治療護(hù)理查房
- 護(hù)理投訴預(yù)案及程序
- 2025年職業(yè)技能鑒定考試(采油地質(zhì)工·技師/二級)歷年參考題庫含答案詳解(5套)
- 互聯(lián)網(wǎng)內(nèi)容翻譯實(shí)踐動態(tài)對等法則
- 2025年福建省機(jī)關(guān)事業(yè)單位工勤人員技能等級考試(公路收費(fèi)及監(jiān)控員·技師)歷年參考題庫含答案詳解(5套)
- 2025年福建省住院醫(yī)師規(guī)范化培訓(xùn)結(jié)業(yè)理論考核(外科)歷年參考題庫含答案詳解(5卷)
- 頁巖氣藏滲流理論-洞察及研究
- 2025年省級行業(yè)企業(yè)職業(yè)技能競賽(中藥炮制工)歷年參考題庫含答案詳解(5套)
- 【億歐】2025年全球AI Coding市場洞察研究報(bào)告
- 建行銀行面簽合同協(xié)議
- 第五單元:含長方形和正方形的不規(guī)則或組合圖形的面積專項(xiàng)練習(xí)-2023-2024學(xué)年三年級數(shù)學(xué)下冊典型例題系列(解析版)人教版
- 2025年湖南吉利汽車職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫附答案
- 2023年中小學(xué)心理健康教育課程標(biāo)準(zhǔn)
- 汛期安全教育知識
- 瑜伽消費(fèi)市場潛力評估-洞察分析
- 海姆立克急救法課件
- 工業(yè)鍋爐水質(zhì)課件
- FOCUS-PDCA改善案例-提高術(shù)前手術(shù)部位皮膚準(zhǔn)備合格率醫(yī)院品質(zhì)管理成果匯報(bào)
- 中醫(yī)醫(yī)術(shù)確有專長人員申請表(十三篇)
評論
0/150
提交評論