




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,點P是等邊三角形ABC內一點,且PA=3,PB=4,PC=5,則∠APB的度數是().A.90° B.100° C.120° D.150°2、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機從盒子中摸出一個球記錄顏色后放回.經過多次試驗,發(fā)現摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數約為()A.12 B.15 C.18 D.233、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數是()A.個 B.個 C.個 D.個4、如圖,與相切于點,連接交于點,點為優(yōu)弧上一點,連接,,若,的半徑,則的長為()A.4 B. C. D.15、如圖,幾何體的左視圖是()A. B. C. D.6、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.7、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.8、如圖,AB是的直徑,弦CD交AB于點P,,,,則CD的長為()A. B. C. D.8第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.2、平面直角坐標系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉90°得到AB,當BK取最小值時,點B的坐標為_________.3、如圖,在中,,,.繞點B順時針方向旋轉45°得到,點A經過的路徑為弧,點C經過的路徑為弧,則圖中陰影部分的面積為______.(結果保留)4、小明和小強玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機出手一次,平局的概率為______.5、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.6、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點到AB的距離=______.7、如圖,已知⊙O的半徑為2,弦AB的長度為2,點C是⊙O上一動點若△ABC為等腰三角形,則BC2為_______.三、解答題(7小題,每小題0分,共計0分)1、在平面直角坐標系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.2、如圖所示,是⊙的一條弦,,垂足為,交⊙于點,點在⊙上.()若,求的度數.()若,,求的長.3、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關系并說明理由;(2)若,求弧的長.4、如圖,在6×6的方格紙中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,A,B兩點均在格點上.請按要求在圖①,圖②,圖③中畫圖:(1)在圖①中,畫等腰△ABC,使AB為腰,點C在格點上.(2)在圖②中,畫面積為8的四邊形ABCD,使其為中心對稱圖形,但不是軸對稱圖形,C,D兩點均在格點上.(3)在圖③中,畫△ABC,使∠ACB=90°,面積為5,點C在格點上.5、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.6、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.7、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.-參考答案-一、單選題1、D【分析】將繞點逆時針旋轉得,根據旋轉的性質得,,,則為等邊三角形,得到,,在中,,,,根據勾股定理的逆定理可得到為直角三角形,且,即可得到的度數.【詳解】解:為等邊三角形,,可將繞點逆時針旋轉得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉的性質、等邊三角形,解題的關鍵是掌握旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.2、A【分析】由題意可設盒子中紅球的個數x,則盒子中球的總個數x,摸到紅球的頻率穩(wěn)定在30%左右,根據頻率與概率的關系可得出摸到紅球的概率為30%,再根據概率的計算公式計算即可.【詳解】解:設盒子中紅球的個數x,根據題意,得:解得x=12,所以盒子中紅球的個數是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運用,利用概率的求法估計總體個數,利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=;頻率與概率的關系生:一般地,在大量的重復試驗中,隨著試驗次數的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數p,我們稱事件A發(fā)生的概率為p.3、D【分析】從俯視圖中可以看出最底層小正方體的個數及形狀,從主視圖和左視圖可以看出每一層小正方體的層數和個數,從而算出總的個數.【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數是6,故選D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.4、B【分析】連接OB,根據切線性質得∠ABO=90°,再根據圓周角定理求得∠AOB=60°,進而求得∠A=30°,然后根據含30°角的直角三角形的性質解答即可.【詳解】解:連接OB,∵AB與相切于點B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點睛】本題考查切線的性質、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質、勾股定理,熟練掌握相關知識的聯系與運用是解答的關鍵.5、D【分析】根據從左邊看得到的圖形是左視圖,可得答案.【詳解】根據左視圖的定義可知,這個幾何體的左視圖是選項D,故選:D.【點睛】本題考查簡單組合體的三視圖,解題的關鍵是理解三視圖的定義.6、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關鍵.7、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項不符題意;故選:A.【點睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內,把一個圖形繞某點旋轉,如果旋轉后的圖形與另一個圖形重合,那么這兩個圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形)是解題關鍵.8、A【分析】過點作于點,連接,根據已知條件即可求得,根據含30度角的直角三角形的性質即可求得,根據勾股定理即可求得,根據垂徑定理即可求得的長.【詳解】解:如圖,過點作于點,連接,AB是的直徑,,,,在中,故選A【點睛】本題考查了勾股定理,含30度角的直角三角形的性質,垂徑定理,掌握以上定理是解題的關鍵.二、填空題1、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.2、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運動,設直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據垂線段最短可知,當點B與點M重合時,BK的值最小,利用等腰直角三角形的性質可得M的坐標,從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運動,設直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據垂線段最短可知,當點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標與圖形的變化﹣旋轉,全等三角形的判定和性質,一次函數的應用,垂線段最短等知識,解題的關鍵是正確尋找點B的運動軌跡,學會利用垂線段最短解決最短問題.3、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據勾股定理逆定理可得為直角三角形,根據三邊關系可得,根據題意及等角對等邊得出,在中,利用正弦函數可得,結合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉的性質,等角對等邊的性質,正切函數,扇形面積等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.4、【分析】首先根據題意列出表格,然后由表格即可求得所有等可能的結果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強玩“石頭、剪刀、布”游戲,所有可能出現的結果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強平局的概率為:,故答案為:.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數與總情況數之比.5、18.84【分析】先根據弧長公式求得πr,然后再運用圓的周長公式解答即可.【詳解】解:設圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點睛】本題主要考查了弧長公式、圓的周長公式等知識點,牢記弧長公式是解答本題的關鍵.6、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點,然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點,由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點,∵OA=OB,∠AOB=90°,AB=a,∴根據勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據勾股定理得:OC==.故答案為:;【點睛】此題考查了垂徑定理,等腰直角三角形的性質,以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據近垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構造直角三角形,利用勾股定理來解決問題.7、4或12或【分析】分三種情況討論:當AB=BC時、當AB=AC時、當AC=BC時,根據垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當AB=BC時,BC=2,故BC2=4;如圖2,當AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當AC=BC時,則C在AB的垂直平分線上,∴CD經過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點睛】本題考查了垂徑定理,等腰三角形的性質,勾股定理的應用,熟練掌握性質定理是解題的關鍵.三、解答題1、(1)0,;(2);(3)【分析】(1)根據新定義,即可求解;(2)過點O作OD⊥AB于點D,根據三角形的面積,可得,再由d(⊙O,線段AB)=0,可得當⊙O的半徑等于OD時最小,當⊙O的半徑等于OB時最大,即可求解;(3)過點C作CN⊥AB于點N,利用銳角三角函數,可得∠OAB=60°,然后分三種情況:當點C在點A的右側時,當點C與點A重合時,當點C在點A的左側時,即可求解.【詳解】解:(1)∵⊙O的半徑為2,A(,0),B(0,).∴,∴點A在⊙O上,點B在⊙O外,∴d(A,⊙O)=,∴d(B,⊙O)=;(2)過點O作OD⊥AB于點D,∵點A(,0),B(0,).∴,∴,∵,∴∴,∵d(⊙O,線段AB)=0,∴當⊙O的半徑等于OD時最小,當⊙O的半徑等于OB時最大,∴r的取值范圍是,(3)如圖,過點C作CN⊥AB于點N,∵點A(,0),B(0,).∴,∴,∴∠OAB=60°,∵C(m,0),當點C在點A的右側時,,∴,∴,∵d(⊙C,線段AB)<1,⊙C的半徑為1,∴,解得:,當點C與點A重合時,,此時d(⊙C,線段AB)=0,當點C在點A的左側時,,∴,∴,解得:,∴.【點睛】本題主要考查了點與圓的位置關系,點與直線的位置關系,理解新定義,熟練掌握點與圓的位置關系,點與直線的位置關系是解題的關鍵.2、(1)26°;(2)8【分析】(1)欲求,又已知一圓心角,可利用圓周角與圓心角的關系求解;(2)利用垂徑定理可以得到,從而得到結論.【詳解】解:(1),,.(2)∵,,且,∴,∵,,.【點睛】此題考查了圓周角定理,同圓中等弧所對的圓周角相等,以及垂徑定理,熟練掌握垂徑定理得出是解題關鍵.3、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的基本性質,垂徑定理,切線的判定,等邊三角形的判定和性質,熟練掌握相關知識點是解題的關鍵.4、(1)見解析;(2)見解析;(3)見解析【分析】(1)因為AB=5,作腰為5的等腰三角形即可(答案不唯一);(2)作邊長為2,高為4的平行四邊形即可;(3)根據(1)的結論,作BG邊的中線,即可得解.【詳解】解:(1)如圖①中,△ABC即為所求作(答案不唯一);(2)如圖②中,平行四邊形ABCD即為所求作;(3)如圖③中,△ABC即為所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面積為,∴△ABC的面積為5,且∠ACB=90°.【點睛】本題考查作圖-應用與設計,等腰三角形的判定和性質,勾股定理及其逆定理等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.5、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市公共景觀空間提升方案
- 大專生疫情防控知識培訓課件
- 2025年上海新上鐵實業(yè)發(fā)展集團有限公司合肥分公司招聘1人模擬試卷附答案詳解(突破訓練)
- 綠色包裝智能工廠項目建設工程方案
- 大專上崗培訓課件
- 工程項目成本節(jié)約方案
- 2025河南新鄉(xiāng)市延津縣審計局招聘輔助審計人員5人考前自測高頻考點模擬試題及完整答案詳解1套
- 橋梁結構檢測與評估方案
- 2025年信息科醫(yī)院考試題及答案
- 再生功能性纖維新材料改造項目環(huán)境影響報告書
- 美術基礎 課件全套 第1-5章 美術簡介 -中國民間美術
- 2024人教版七年級生物下冊期末復習全冊考點背誦提綱
- 生物力學正畸方案優(yōu)化-洞察及研究
- 《中職工程測量技術專業(yè)《GNSS測量技術與應用》課程標準》
- 公安部門大數據管理辦法
- 污廢水減污降碳協(xié)同評估指南
- 骨科患者圍手術期營養(yǎng)管理
- 2025年上海市(秋季)高考語文真題詳解
- 水廠培訓課件
- 類風濕關節(jié)炎達標治療
- 變電運行與檢修考試題(附答案解析)
評論
0/150
提交評論