




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川遂寧市第二中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,132、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm3、如圖,AB∥CD,∠E+∠F=85°,則∠A+∠C=()A.85° B.105°C.115° D.95°4、如果一個(gè)三角形的兩邊長(zhǎng)分別為5cm和8cm,則第三邊長(zhǎng)可能是()A.2cm B.3cm C.12cm D.13cm5、如圖,和全等,且,對(duì)應(yīng).若,,,則的長(zhǎng)為()A.4 B.5 C.6 D.無(wú)法確定6、定理:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測(cè)量所得)又∵133°=70°+63°(計(jì)算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說(shuō)法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理7、一個(gè)三角形的兩邊長(zhǎng)分別是3和5,則它的第三邊可能為()A.2 B.4 C.8 D.118、三根小木棒擺成一個(gè)三角形,其中兩根木棒的長(zhǎng)度分別是和,那么第三根小木棒的長(zhǎng)度不可能是()A. B. C. D.9、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結(jié)論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE10、如圖,在正方形ABCD中,E,F(xiàn)分別為AD,CD上的點(diǎn),且AE=CF,則下列說(shuō)法正確的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠2第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則陰影部分的面積______.2、如圖,已知AB=12m,CA⊥AB于點(diǎn)A,DB⊥AB于點(diǎn)B,且AC=4m,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動(dòng),每分鐘走2m.若P,Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)_____分鐘后,△CAP與△PQB全等.3、如圖,直線ED把分成一個(gè)和四邊形BDEC,的周長(zhǎng)一定大于四邊形BDEC的周長(zhǎng),依據(jù)的原理是____________________________________.4、如圖,ABDC,ADBC,AC與BD交于點(diǎn)O,EF經(jīng)過(guò)點(diǎn)O,與AD、BC分別交于點(diǎn)E和F,則圖中共有___對(duì)全等三角形.5、如圖,△ABC三個(gè)內(nèi)角的平分線交于點(diǎn)O,點(diǎn)D在AB的延長(zhǎng)線上,AD=AC,BD=BO,若∠ACB=40°,則∠ABC的度數(shù)為_(kāi)____.6、如圖,方格紙中是9個(gè)完全相同的正方形,則∠1+∠2的值為_(kāi)____.7、如圖,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,連接AC、BD交于點(diǎn)M,連接OM.下列結(jié)論:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正確的結(jié)論是_____.(填序號(hào))8、如圖,AB=CD,若要判定△ABD≌△CDB,則需要添加的一個(gè)條件是____________.9、已知,如圖,AB=AC,AD=AE,BE與CD相交于點(diǎn)P,則下列結(jié)論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對(duì)全等三角形;正確的是_____(請(qǐng)?zhí)顚?xiě)序號(hào)).10、如圖,在△ABC中,AD是BC邊上的中線,BE是△ABD中AD邊上的中線,若△ABC的面積是80,則△ABE的面積是________.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在中,,,點(diǎn)D是內(nèi)一點(diǎn),連接CD,過(guò)點(diǎn)C作且,連接AD,BE.求證:.2、如圖,在中,,,,BD是的角平分線,點(diǎn)E在AB邊上,.求的周長(zhǎng).3、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問(wèn)題時(shí),若能根據(jù)問(wèn)題的需要,添加適當(dāng)?shù)钠叫芯€,往往能使證明順暢、簡(jiǎn)潔.請(qǐng)根據(jù)上述思想解決問(wèn)題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關(guān)系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個(gè)點(diǎn)M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.4、如圖,在△ABC中,D為BC的中點(diǎn),過(guò)D點(diǎn)的直線GF交AC于點(diǎn)F,交AC的平行線BG于點(diǎn)G,DE⊥GF,并交AB于點(diǎn)E,連接EG,EF.(1)求證:BG=CF.(2)請(qǐng)你猜想BE+CF與EF的大小關(guān)系,并說(shuō)明理由.5、已知∠ACD=90°,MN是過(guò)點(diǎn)A的直線,AC=DC,且DB⊥MN于點(diǎn)B,如圖易證BD+ABCB,過(guò)程如下:解:過(guò)點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當(dāng)MN繞A旋轉(zhuǎn)到如圖(2)位置時(shí),BD、AB、CB滿足什么樣關(guān)系式,請(qǐng)寫(xiě)出你的猜想,并給予證明.(2)當(dāng)MN繞A旋轉(zhuǎn)到如圖(3)位置時(shí),BD、AB、CB滿足什么樣關(guān)系式,請(qǐng)直接寫(xiě)出你的結(jié)論.6、在四邊形ABCD中,,點(diǎn)E在直線AB上,且.(1)如圖1,若,,,求AB的長(zhǎng);(2)如圖2,若DE交BC于點(diǎn)F,,求證:.-參考答案-一、單選題1、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點(diǎn)睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.2、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對(duì)各選項(xiàng)進(jìn)行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關(guān)系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點(diǎn)睛】本題主要考查三角形三邊關(guān)系,注意掌握判斷能否組成三角形的簡(jiǎn)便方法是看較小的兩個(gè)數(shù)的和是否大于第三個(gè)數(shù).3、D【分析】設(shè)交于點(diǎn),過(guò)點(diǎn)作,根據(jù)平行線的性質(zhì)可得,根據(jù)三角形的外角性質(zhì)可得,進(jìn)而即可求得【詳解】解:設(shè)交于點(diǎn),過(guò)點(diǎn)作,如圖,∵∴∠E+∠F=85°故選D【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形的外角性質(zhì),平角的定義,掌握三角形的外角性質(zhì)是解題的關(guān)鍵.4、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長(zhǎng)為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點(diǎn)睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識(shí)點(diǎn)5、A【分析】全等三角形對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等,根據(jù)題中信息得出對(duì)應(yīng)關(guān)系即可.【詳解】∵和全等,,對(duì)應(yīng)∴∴AB=DF=4故選:A.【點(diǎn)睛】本題考查了全等三角形的概念及性質(zhì),應(yīng)注意①對(duì)應(yīng)邊、對(duì)應(yīng)角是對(duì)兩個(gè)三角形而言的,指兩條邊、兩個(gè)角的關(guān)系,而對(duì)邊、對(duì)角是指同一個(gè)三角形的邊和角的位置關(guān)系②可以進(jìn)一步推廣到全等三角形對(duì)應(yīng)邊上的高相等,對(duì)應(yīng)角的平分線相等,對(duì)應(yīng)邊上的中線相等,周長(zhǎng)及面積相等③全等三角形有傳遞性.6、D【分析】利用測(cè)量的方法只能是驗(yàn)證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項(xiàng)即可得到答案.【詳解】解:證法一只是利用特殊值驗(yàn)證三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,也只是驗(yàn)證,不能證明該定理,故B不符合題意;故選D【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)的驗(yàn)證與證明,理解驗(yàn)證與證明的含義及證明的方法是解本題的關(guān)鍵.7、B【分析】根據(jù)三角形的三邊關(guān)系定理:三角形兩邊之和大于第三邊,三角形的兩邊之差小于第三邊,設(shè)第三邊為,可得,再解即可.【詳解】設(shè)第三邊為,由題意得:,.故選:B.【點(diǎn)睛】此題主要考查了三角形的三邊關(guān)系:掌握第三邊大于已知的兩邊的差,而小于兩邊的和是解題的關(guān)鍵.8、D【分析】設(shè)第三根木棒長(zhǎng)為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長(zhǎng)為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點(diǎn)睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.9、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進(jìn)而逐一進(jìn)行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項(xiàng)錯(cuò)誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項(xiàng)錯(cuò)誤;D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).10、C【分析】由“SAS”可證△ABE≌△CBF,可得∠AEB=∠2,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故選:C.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),證明三角形全等是解題的關(guān)鍵.二、填空題1、【分析】根據(jù)三角形中線性質(zhì),平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點(diǎn),,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點(diǎn),故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點(diǎn)撥】本題考查了三角形中線的性質(zhì),牢固掌握并會(huì)運(yùn)用是解題關(guān)鍵.2、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時(shí)間求得的長(zhǎng),根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),每分鐘走1m,點(diǎn)Q從點(diǎn)B向點(diǎn)D運(yùn)動(dòng),每分鐘走2m,設(shè)運(yùn)動(dòng)時(shí)間為,且AC=4m,,當(dāng)時(shí)則,即,解得當(dāng)時(shí),則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點(diǎn)睛】本題考查了三角形全等的性質(zhì),根據(jù)全等的性質(zhì)列出方程是解題的關(guān)鍵.3、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長(zhǎng),再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長(zhǎng)=四邊形BDEC的周長(zhǎng)=∵在中∴即的周長(zhǎng)一定大于四邊形BDEC的周長(zhǎng),∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點(diǎn)睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識(shí)點(diǎn).4、6【分析】根據(jù)平行線的性質(zhì)得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質(zhì)得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質(zhì)定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點(diǎn)睛】本題考查了全等三角形的判定定理和性質(zhì)定理,平行線的性質(zhì)等知識(shí)點(diǎn),能熟記全等三角形的判定定理和性質(zhì)定理是解此題的關(guān)鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.5、度【分析】連接,,利用證明,則,根據(jù)角平分線的定義得到,再利用三角形外角性質(zhì)得出,最后根據(jù)角平分線的定義即可得解.【詳解】解:連接,,平分,,在和中,,,,平分,,,,,,,平分,,故答案為:.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),角平分線,解題的關(guān)鍵是利用證明.6、【分析】如圖(見(jiàn)解析),先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),正確找出兩個(gè)全等三角形是解題關(guān)鍵.7、①②④【分析】由證明得出,,①正確;由全等三角形的性質(zhì)得出,由三角形的外角性質(zhì)得:,得出,②正確;作于,于,如圖所示:則,利用全等三角形對(duì)應(yīng)邊上的高相等,得出,由角平分線的判定方法得出平分,④正確;假設(shè)平分,則,由全等三角形的判定定理可得,得,而,所以,而,故③錯(cuò)誤;即可得出結(jié)論.【詳解】解:,,即,在和中,,,,,故①正確;,由三角形的外角性質(zhì)得:,,故②正確;作于,于,如圖所示,則,,,平分,故④正確;假設(shè)平分,則,在與中,,,,,,而,故③錯(cuò)誤;所以其中正確的結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識(shí);證明三角形全等是解題的關(guān)鍵.8、∠1=∠2(或填A(yù)D=CB)【分析】根據(jù)題意知,在△ABD與△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【詳解】解:∵在△ABD與△CDB中,AB=CD,BD=DB,∴添加∠1=∠2時(shí),可以根據(jù)SAS判定△ABD≌△CDB,添加AD=CB時(shí),可以根據(jù)SSS判定△ABD≌△CDB,,故答案為∠1=∠2(或填A(yù)D=CB).【點(diǎn)睛】本題考查了全等三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.9、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個(gè)數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當(dāng)AP=PB時(shí),∠PAB=∠B,當(dāng)AP≠PB時(shí),∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對(duì)全等三角形,故④正確故答案為:①②④【點(diǎn)睛】本題考查三角形全等判定與性質(zhì),掌握全等三角形的判定方法與性質(zhì)是解題關(guān)鍵.10、20【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可解答.【詳解】解:∵AD是BC上的中線,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD邊上的中線,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面積是80,∴S△ABE=×80=20.故答案為:20.【點(diǎn)睛】本題主要考查了三角形面積的求法,掌握三角形的中線將三角形分成面積相等的兩部分,是解答本題的關(guān)鍵.三、解答題1、證明見(jiàn)解析.【分析】先根據(jù)角的和差可得,再根據(jù)三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】證明:,,,,,在和中,,,.【點(diǎn)睛】本題考查了三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),熟練掌握三角形全等的判定方法是解題關(guān)鍵.2、【分析】由題意結(jié)合角平分線性質(zhì)和全等三角形判定得出,進(jìn)而依據(jù)的周長(zhǎng)進(jìn)行求解即可.【詳解】解:∵,,,∴,∵BD是的角平分線,∴,在和中,,∴,∴,∵,∴的周長(zhǎng).【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì)以及角平分線性質(zhì),熟練掌握利用全等三角形的判定與性質(zhì)以及角平分線性質(zhì)進(jìn)行邊的等量替換是解題的關(guān)鍵.3、(1)∠BED=∠B+∠D;(2)證明見(jiàn)詳解.【分析】(1)作EF∥AB,證明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可證明∠BED=∠B+∠D;(2)根據(jù)(1)結(jié)論得到∠N=∠BAN+∠DCN,進(jìn)而得到∠AMN=∠BAN+∠DCN,根據(jù)三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根據(jù)∠DCN=∠CAN,即可證明∠CAM=∠BAN.【詳解】解:如圖1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D;(2)證明:∵AB∥CD,∴由(1)得∠N=∠BAN+∠DCN,∵∠AMN=∠ANM,∴∠AMN=∠BAN+∠DCN,∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM,∴∠BAN+∠DCN=∠ACM+∠CAM,∵CN平分∠ACD,∴∠DCN=∠CAN,∴∠CAM=∠BAN.【點(diǎn)睛】本題考查了平行線的性質(zhì),角平分線的定義,三角形的外角定理等知識(shí),熟知相關(guān)定理并根據(jù)題意添加輔助線進(jìn)行角的轉(zhuǎn)化是解題關(guān)鍵.4、(1)見(jiàn)解析;(2)BE+CF>EF.見(jiàn)解析【分析】(1)利用平行關(guān)系以及BC的中點(diǎn),求證△CFD≌△BGD,進(jìn)而證明BG=CF.(2)在△BGE中,利用三邊關(guān)系得到BG+BE>EG,利用△CFD≌△BGD,將不等式中的、用、替換,即可證明.【詳解】(1)證明:∵BGAC,∴∠C=∠GBD,∵D是BC的中點(diǎn),∴BD=DC,在△CFD和△BGD中,∴△CFD≌△BGD,∴BG=CF.(2)解:BE+CF>EF,理由如下:∵△CFD≌△BGD,∴CF=BG,在△BGE中,BG+BE>EG,∵△CFD≌△BGD,∴GD=DF,ED⊥GF,∴EF=EG,∴BE+CF>EF.【點(diǎn)睛】本題主要是考查了全等三角形的判定和性質(zhì)以及三角形的三邊關(guān)系,通過(guò)題目所給條件,正確找到證明三角形全等的條件,進(jìn)而應(yīng)用全等三角形性質(zhì)以及三邊關(guān)系解題,是解決本題的關(guān)鍵.5、(1)AB-BD=CB,證明見(jiàn)解析.(2)BD-AB=CB,證明見(jiàn)解析.【分析】(1)仿照?qǐng)D(1)的解題過(guò)程即可解答.過(guò)點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,根據(jù)同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對(duì)應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過(guò)點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,根據(jù)等角的余角相等及等式的性質(zhì)可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對(duì)應(yīng)邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【詳解】解:(1)AB-BD=CB.證明:如圖(2)過(guò)點(diǎn)C作CE⊥CB于點(diǎn)C,與MN交于點(diǎn)E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=9
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)技術(shù)創(chuàng)新擴(kuò)散對(duì)種植園經(jīng)濟(jì)效益的影響分析考核試卷
- 一元一次方程及其解法-蘇科版新七年級(jí)數(shù)學(xué)小升初自學(xué)提升講義
- 就業(yè)指導(dǎo)師實(shí)習(xí)實(shí)訓(xùn)基地建設(shè)與管理考核試卷
- 吉林地區(qū)普通高中友好學(xué)校聯(lián)合體2024-2025學(xué)年高一下學(xué)期期中數(shù)學(xué)試題(含答案)
- 重科大油層物理教學(xué)大綱
- 廣東省東莞市2024-2025學(xué)年八年級(jí)下學(xué)期7月期末考試英語(yǔ)試卷(含答案)
- 2024-2025學(xué)年浙江省臺(tái)州市溫嶺市一年級(jí)下冊(cè)期末測(cè)試數(shù)學(xué)試卷(答案版)
- AI+數(shù)智應(yīng)用驅(qū)動(dòng)的智改數(shù)轉(zhuǎn)服務(wù)如何助力科技服務(wù)機(jī)構(gòu)實(shí)現(xiàn)差異化發(fā)展
- 如何讓技術(shù)供需對(duì)接活動(dòng)的匹配通過(guò) AI+數(shù)智應(yīng)用更精準(zhǔn)避免資源浪費(fèi)
- 山東省東營(yíng)市廣饒縣(五四制)2023-2024學(xué)年六年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(含答案)
- LNG燃?xì)獍踩R(shí)培訓(xùn)內(nèi)容課件
- 2025年金蝶云星辰初級(jí)考試題庫(kù)
- 第五屆全國(guó)應(yīng)急管理普法知識(shí)競(jìng)賽題庫(kù)及答案(8.4)
- 2025年經(jīng)濟(jì)人員面試題及答案
- 2025年國(guó)際技術(shù)許可合同合同范本
- 銷(xiāo)售管理辦法細(xì)則
- 防火宣傳課件
- 四川阿壩州郵政招聘試題帶答案分析2024年
- 2025至2030中國(guó)慢性病管理行業(yè)發(fā)展趨勢(shì)分析與未來(lái)投資戰(zhàn)略咨詢研究報(bào)告
- 疼痛的中醫(yī)治療課件
- 2025年操作工技能考核考試-高級(jí)壓縮機(jī)工歷年參考題庫(kù)含答案解析(5套100道單選題合輯)
評(píng)論
0/150
提交評(píng)論