




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
實驗中學八年級上冊壓軸題數學模擬數學模擬試題一、壓軸題1.(概念認識)如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分線BD交AC于點D,則∠BDC=°;(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰AB三分線和∠ACB鄰AC三分線,且BP⊥CP,求∠A的度數;(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點P.若∠A=m°,∠B=n°,直接寫出∠BPC的度數.(用含m、n的代數式表示)2.在中,,是直線上一點,在直線上,且.(1)如圖1,當D在上,在延長線上時,求證:;(2)如圖2,當為等邊三角形時,是的延長線上一點,在上時,作,求證:;(3)在(2)的條件下,的平分線交于點,連,過點作于點,當,時,求的長度.3.閱讀下面材料,完成(1)-(3)題.數學課上,老師出示了這樣一道題:如圖1,已知等腰△ABC中,AB=AC,AD為BC邊上的中線,以AB為邊向AB左側作等邊△ABE,直線CE與直線AD交于點F.請?zhí)骄烤€段EF、AF、DF之間的數量關系,并證明.同學們經過思考后,交流了自已的想法:小明:“通過觀察和度量,發(fā)現∠DFC的度數可以求出來.”小強:“通過觀察和度量,發(fā)現線段DF和CF之間存在某種數量關系.”小偉:“通過做輔助線構造全等三角形,就可以將問題解決.”......老師:“若以AB為邊向AB右側作等邊△ABE,其它條件均不改變,請在圖2中補全圖形,探究線段EF、AF、DF三者的數量關系,并證明你的結論.”(1)求∠DFC的度數;(2)在圖1中探究線段EF、AF、DF之間的數量關系,并證明;(3)在圖2中補全圖形,探究線段EF、AF、DF之間的數量關系,并證明.4.(1)填空①把一張長方形的紙片按如圖①所示的方式折疊,,為折痕,折疊后的點落在或的延長線上,那么的度數是________;②把一張長方形的紙片按如圖②所示的方式折疊,點與點重合,,為折痕,折疊后的點落在或的延長線上,那么的度數是_______.(2)解答:①把一張長方形的紙片按如圖③所示的方式折疊,,為折痕,折疊后的點落在或的延長線上左側,且,求的度數;②把一張長方形的紙片按如圖④所示的方式折疊,點與點重合,,為折痕,折疊后的點落在或的延長線右側,且,求的度數.(3)探究:把一張四邊形的紙片按如圖⑤所示的方式折疊,,為折痕,設,,,求,,之間的數量關系.5.探究:如圖①,在△ABC中,∠ACB=90°,CD⊥AB于點D,若∠B=30°,則∠ACD的度數是度;拓展:如圖②,∠MCN=90°,射線CP在∠MCN的內部,點A、B分別在CM、CN上,分別過點A、B作AD⊥CP、BE⊥CP,垂足分別為D、E,若∠CBE=70°,求∠CAD的度數;應用:如圖③,點A、B分別在∠MCN的邊CM、CN上,射線CP在∠MCN的內部,點D、E在射線CP上,連接AD、BE,若∠ADP=∠BEP=60°,則∠CAD+∠CBE+∠ACB=度.6.在等腰中,,為邊上的高,點在的外部且,,連接交直線于點,連接.(1)如圖①,當時,求證:;(2)如圖②,當時,求的度數;(3)如圖③,當時,求證:.7.閱讀并填空:如圖,是等腰三角形,,是邊延長線上的一點,在邊上且聯接交于,如果,那么,為什么?解:過點作交于所以(兩直線平行,同位角相等)(________)在與中所以,(________)所以(________)因為(已知)所以(________)所以(等量代換)所以(________)所以8.如圖,在等邊中,線段為邊上的中線.動點在直線上時,以為一邊在的下方作等邊,連結.(1)求的度數;(2)若點在線段上時,求證:;(3)當動點在直線上時,設直線與直線的交點為,試判斷是否為定值?并說明理由.9.在△ABC中,∠BAC=45°,CD⊥AB,垂足為點D,M為線段DB上一動點(不包括端點),點N在直線AC左上方且∠NCM=135°,CN=CM,如圖①.(1)求證:∠ACN=∠AMC;(2)記△ANC得面積為5,記△ABC得面積為5.求證:;(3)延長線段AB到點P,使BP=BM,如圖②.探究線段AC與線段DB滿足什么數量關系時對于滿足條件的任意點M,AN=CP始終成立?(寫出探究過程)10.請按照研究問題的步驟依次完成任務.(問題背景)(1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+∠B=∠C+∠D.(簡單應用)(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度數(可直接使用問題(1)中的結論)(問題探究)(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度數為;(拓展延伸)(4)在圖4中,若設∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數量關系為(用x、y表示∠P);(5)在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、D的關系,直接寫出結論.11.對定義一種新運算,規(guī)定:(其中均為非零常數).例如:.(1)已知.①求的值;②若關于的不等式組恰好有3個整數解,求的取值范圍;(2)當時,對任意有理數都成立,請直接寫出滿足的關系式.學習參考:①,即單項式乘以多項式就是用單項式去乘多項式的每一項,再把所得的結果相加;②,即多項式乘以多項式就是用一個多項式的每一項去乘另一個多項式的每一項,再把所得的結果相加.12.某校七年級數學興趣小組對“三角形內角或外角平分線的夾角與第三個內角的數量關系”進行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數量關系,并說明理由;(4)如圖4,△ABC外角∠CBM、∠BCN的平分線交于點Q,∠A=64°,∠CBQ,∠BCQ的平分線交于點P,則∠BPC=゜,延長BC至點E,∠ECQ的平分線與BP的延長線相交于點R,則∠R=゜.13.已知,如圖1,直線l2⊥l1,垂足為A,點B在A點下方,點C在射線AM上,點B、C不與點A重合,點D在直線11上,點A的右側,過D作l3⊥l1,點E在直線l3上,點D的下方.(1)l2與l3的位置關系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點C在射線AM上運動,∠BDC的角平分線交EB的延長線于點N,在點C的運動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.14.探索發(fā)現:……根據你發(fā)現的規(guī)律,回答下列問題:(1)=,=;(2)利用你發(fā)現的規(guī)律計算:(3)利用規(guī)律解方程:15.在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數不同對稱軸的條數也不同;有些多邊形,邊數相同但卻有不同數目的對稱軸.回答下列問題:(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;(3)小明希望構造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.16.小敏與同桌小穎在課下學習中遇到這樣一道數學題:“如圖(1),在等邊三角形中,點在上,點在的延長線上,且,試確定線段與的大小關系,并說明理由”.小敏與小穎討論后,進行了如下解答:(1)取特殊情況,探索討論:當點為的中點時,如圖(2),確定線段與的大小關系,請你寫出結論:_____(填“”,“”或“”),并說明理由.(2)特例啟發(fā),解答題目:解:題目中,與的大小關系是:_____(填“”,“”或“”).理由如下:如圖(3),過點作EF∥BC,交于點.(請你將剩余的解答過程完成)(3)拓展結論,設計新題:在等邊三角形中,點在直線上,點在直線上,且,若△的邊長為,,求的長(請你畫出圖形,并直接寫出結果).17.(閱讀材料):(1)在中,若,由“三角形內角和為180°”得.(2)在中,若,由“三角形內角和為180°”得.(解決問題):如圖①,在平面直角坐標系中,點C是x軸負半軸上的一個動點.已知軸,交y軸于點E,連接CE,CF是∠ECO的角平分線,交AB于點F,交y軸于點D.過E點作EM平分∠CEB,交CF于點M.(1)試判斷EM與CF的位置關系,并說明理由;(2)如圖②,過E點作PE⊥CE,交CF于點P.求證:∠EPC=∠EDP;(3)在(2)的基礎上,作EN平分∠AEP,交OC于點N,如圖③.請問隨著C點的運動,∠NEM的度數是否發(fā)生變化?若不變,求出其值:若變化,請說明理由.18.在初中數學學習階段,我們常常會利用一些變形技巧來簡化式子,解答問題.材料一:在解決某些分式問題時,倒數法是常用的變形技巧之一,所謂倒數法,即把式子變成其倒數形式,從而運用約分化簡,以達到計算目的.例:已知:,求代數式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解決某些連等式問題時,通??梢砸雲怠発”,將連等式變成幾個值為k的等式,這樣就可以通過適當變形解決問題.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)則根據材料回答問題:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.19.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數;(2)如圖2,將沿射線的方向平移,當點在上時,求度數;(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數.20.已知:中,過B點作BE⊥AD,.(1)如圖1,點在的延長線上,連,作于,交于點.求證:;(2)如圖2,點在線段上,連,過作,且,連交于,連,問與有何數量關系,并加以證明;(3)如圖3,點在CB延長線上,且,連接、的延長線交于點,若,請直接寫出的值.【參考答案】***試卷處理標記,請不要刪除一、壓軸題1.(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m【解析】【分析】(1)根據題意可得的三分線有兩種情況,畫圖根據三角形的外角性質即可得的度數;(2)根據、分別是鄰三分線和鄰三分線,且可得,進而可求的度數;(3)根據的三分線所在的直線與的三分線所在的直線交于點.分四種情況畫圖:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,再根據,,即可求出的度數.【詳解】解:(1)如圖,當是“鄰三分線”時,;當是“鄰三分線”時,;故答案為:85或100;(2),,,又、分別是鄰三分線和鄰三分線,,,,,在中,.(3)分4種情況進行畫圖計算:情況一:如圖①,當和分別是“鄰三分線”、“鄰三分線”時,;情況二:如圖②,當和分別是“鄰三分線”、“鄰三分線”時,;情況三:如圖③,當和分別是“鄰三分線”、“鄰三分線”時,;情況四:如圖④,當和分別是“鄰三分線”、“鄰三分線”時,①當時,;②當時,.【點睛】本題考查了三角形的外角性質,解決本題的關鍵是掌握三角形的外角性質.注意要分情況討論.2.(1)見解析;(2)見解析;(3)3【解析】【分析】(1)根據等腰三角形的性質和外角的性質即可得到結論;(2)過E作EF∥AC交AB于F,根據已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據全等三角形的性質即可得到結論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點睛】本題考查了全等三角形的判定與性質,等腰三角形和直角三角形的性質,三角形的外角的性質,等邊三角形的判定和性質,證明三角形全等是解決問題的關鍵.3.(1)60°;(2)EF=AF+FC,證明見解析;(3)AF=EF+2DF,證明見解析.【解析】【分析】(1)可設∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根據三角形內角和可得2α+60+2β=180°,從而有α+β=60°,即可得出∠DFC的度數;(2)在EC上截取EG=CF,連接AG,證明△AEG≌△ACF,然后再證明△AFG為等邊三角形,從而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,連接BG,BF,證明方法類似(2),先證明△ABG≌△EBF,再證明△BFG為等邊三角形,最后可得出結論.【詳解】解:(1)∵AB=AC,AD為BC邊上的中線,∴可設∠BAD=∠CAD=α,又△ABE為等邊三角形,∴AE=AB=AC,∠EAB=60°,∴可設∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,證明如下:∵AB=AC,AD為BC邊上的中線,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,則∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,連接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG為等邊三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)補全圖形如圖所示,結論:AF=EF+2DF.證明如下:同(1)可設∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE為等邊三角形,∴∠ABE=∠AFC=60°,∴由8字圖可得:∠BAD=∠BEF,在AF上截取AG=EF,連接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG為等邊三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【點睛】本題考查了全等三角形的判定和性質、等邊三角形的性質、等腰三角形的性質等知識,解決問題的關鍵是常用輔助線構造全等三角形,屬于中考常考題型.4.,;,;,.【解析】【分析】(1)①如圖①知,得可求出解.②由圖②知得可求出解.(2)①由圖③折疊知,可推出,即可求出解.②由圖④中折疊知,可推出,即可求出解.(3)如圖⑤-1、⑤-2中分別由折疊可知,、,即可求得、.【詳解】解:(1)①如圖①中,,,,故答案為.②如圖②中,,,故答案為.(2)①如圖③中由折疊可知,,,,,;②如圖④中根據折疊可知,,,,,,;(3)如圖⑤-1中,由折疊可知,,;如圖⑤-2中,由折疊可知,,.【點睛】本題考查了圖形的變換中折疊屬全等變換,圖形的角度及邊長不變及一些角度的計算問題,突出考查學生的觀察能力、思維能力以及動手操作能力,本題是代數、幾何知識的綜合運用典型題目.5.探究:30;(2)拓展:20°;(3)應用:120【解析】【分析】(1)利用直角三角形的性質依次求出∠A,∠ACD即可;(2)利用直角三角形的性質直接計算得出即可;(3)利用三角形的外角的性質得出結論,直接轉化即可得出結論.【詳解】(1)在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=90°﹣∠A=30°;故答案為:30,(2)∵BE⊥CP,∴∠BEC=90°,∵∠CBE=70°,∴∠BCE=90°﹣∠CBE=20°,∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=70°,∵AD⊥CP,∴∠CAD=90°﹣∠ACD=20°;(3)∵∠ADP是△ACD的外角,∴∠ADP=∠ACD+∠CAD=60°,同理,∠BEP=∠BCE+∠CBE=60°,∴∠CAD+∠CBE+∠ACB=∠CAD+∠CBE+∠ACD+∠BCE=(∠CAD+∠ACD)+(∠CBE+∠BCE)=120°,故答案為120.【點睛】此題是三角形的綜合題,主要考查了直角三角形的性質,三角形的外角的性質,垂直的定義,解本題的關鍵是充分利用直角三角形的性質:兩銳角互余,是一道比較簡單的綜合題.6.(1)見解析;(2);(3)見解析【解析】【分析】(1)根據等腰三角形三線合一的性質,可得AE垂直平分BC,F為垂直平分線AE上點,即可得出結論;(2)根據(1)的結論可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出,根據外角性質可得計算即可;(3)在CF上截取CM=DF,連接AM,證明△ACM≌△ADF(SAS),進而證得△AFM為等邊三角形即可.【詳解】(1)證明:∵AE為等腰△ABC底邊BC上的高線,AB=AC,,∠AEB=∠AEC=90°,BE=CE,∴AE垂直平分BE,F在AE上,;(2),,,,由(1)知,AE平分∠BAC,,,故答案為:60°;(3)在CF上截取CM=DF,連接AM,由(1)可知,∠ABC=∠ACB,∠FBC=∠FCB,,,,,在△ACM和△ADF中,∴△ACM≌△ADF(SAS),,,∴△AFM為等邊三角形,,.【點睛】本題考查了等腰三角形的性質,垂直平分線的性質,三角形全等的判定和性質,等邊三角形的判定和性質,掌握三角形全等的判定和性質是解題的關鍵.7.見解析【解析】【分析】先根據平行線的性質,得到角的關系,然后證明,寫出證明過程和依據即可.【詳解】解:過點作交于,∴(兩直線平行,同位角相等),∴(兩直線平行,內錯角相等),在與中,∴,()∴(全等三角形對應邊相等)∵(已知)∴(等邊對等角)∴(等量代換)∴(等角對等邊)∴;【點睛】本題考查了全等三角形的判定和性質,平行線的性質,解題的關鍵是由平行線的性質正確找到證明三角形全等的條件,從而進行證明.8.(1)30°;(2)證明見解析;(3)是定值,.【解析】【分析】(1)根據等邊三角形的性質可以直接得出結論;(2)根據等邊三角形的性質就可以得出,,,,由等式的性質就可以,根據就可以得出;(3)分情況討論:當點在線段上時,如圖1,由(2)可知,就可以求出結論;當點在線段的延長線上時,如圖2,可以得出而有而得出結論;當點在線段的延長線上時,如圖3,通過得出同樣可以得出結論.【詳解】(1)是等邊三角形,.線段為邊上的中線,,.(2)與都是等邊三角形,,,,,.在和中,;(3)是定值,,理由如下:①當點在線段上時,如圖1,由(2)可知,則,又,,是等邊三角形,線段為邊上的中線平分,即.②當點在線段的延長線上時,如圖2,與都是等邊三角形,,,,,,在和中,,,同理可得:,.③當點在線段的延長線上時,與都是等邊三角形,,,,,,在和中,,,同理可得:,∵,.綜上,當動點在直線上時,是定值,.【點睛】此題考查等邊三角形的性質,全等三角形的判定及性質,等邊三角形三線合一的性質,解題中注意分類討論的思想解題.9.(1)證明見解析;(2)證明見解析;(3)當AC=2BD時,對于滿足條件的任意點N,AN=CP始終成立,證明見解析.【解析】【分析】(1)由三角形的內角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)過點N作NE⊥AC于E,由“AAS”可證△NEC≌△CDM,可得NE=CD,由三角形面積公式可求解;(3)過點N作NE⊥AC于E,由“SAS”可證△NEA≌△CDP,可得AN=CP.【詳解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)過點N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC?NE,S2AB?CD,∴;(3)當AC=2BD時,對于滿足條件的任意點N,AN=CP始終成立,理由如下:過點N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【點睛】本題三角形綜合題,考查了全等三角形的判定和性質,三角形內角和定理,三角形面積公式等知識,添加恰當輔助線構造全等三角形是本題的關鍵.10.(1)見解析;(2)∠P=23o;(3)∠P=26o;(4)∠P=;(5)∠P=.【解析】【分析】(1)根據三角形內角和定理即可證明;(2)如圖2,根據角平分線的性質得到∠1=∠2,∠3=∠4,列方程組即可得到結論;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問題;(4)根據題意得出∠B+∠CAB=∠C+∠BDC,再結合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),從而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;(5)根據題意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再結合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD+∠D=.【詳解】解:(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的結論得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案為:26°;(4)由題意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=y+(∠CAB-∠CDB)=y+(x-y)=故答案為:∠P=;(5)由題意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,∴∠P=90°+∠BCD-∠BAD+∠D=90°+(∠BCD-∠BAD)+∠D=90°+(∠B-∠D)+∠D=,故答案為:∠P=.【點睛】本題考查三角形內角和,三角形的外角的性質、多邊形的內角和等知識,解題的關鍵是學會用方程組的思想思考問題,屬于中考常考題型.11.(1)①;②42≤a<54;(2)m=2n【解析】【分析】(1)①構建方程組即可解決問題;②根據不等式即可解決問題;(2)利用恒等式的性質,根據關系式即可解決問題.【詳解】解:(1)①由題意得,解得,②由題意得,解不等式①得p>-1.解不等式②得p≤,∴-1<p≤,∵恰好有3個整數解,∴2≤<3.∴42≤a<54;(2)由題意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵對任意有理數x,y都成立,∴m=2n.【點睛】本題考查一元一次不等式、二元一次方程組、恒等式等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考??碱}型.12.(1)122°;(2);(3);(4)119,29;【解析】【分析】(1)根據三角形的內角和角平分線的定義;(2)根據三角形的一個外角等于與它不相鄰的兩個內角的和,用與表示出,再利用與表示出,于是得到結論;(3)根據三角形的一個外角等于與它不相鄰的兩個內角的和以及角平分線的定義表示出與,然后再根據三角形的內角和定理列式整理即可得解;(4)根據(1),(3)的結論可以得出∠BPC的度數;根據(2)的結論可以得到∠R的度數.【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)如圖2示,和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結論.(4)由(3)可知,,再根據(1),可得;由(2)可得:;故答案為:119,29.【點睛】本題考查了三角形的外角性質與內角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.13.(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據平行線的判定定理即可得到結論;(2)根據角平分線的定義和平行線的性質即可得到結論;(3)根據角平分線的定義和平行線的性質即可得到結論;(4)根據角平分線的定義,平行線的性質,三角形外角的性質即可得到結論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點睛】本題考查了三角形的綜合題,三角形的內角和定理,三角形外角的性質,平行線的判定和性質,角平分線的定義,正確的識別圖形進行推理是解題的關鍵.14.(1);(2);(3)見解析.【解析】【分析】(1)根據簡單的分式可得,相鄰兩個數的積的倒數等于它們的倒數之差,即可得到和(2)根據(1)規(guī)律將乘法寫成減法的形式,可以觀察出前一項的減數等于后一項的被減數,因此可得它們的和.(3)首先利用(2)的和的結果將左邊化簡,再利用分式方程的解法求解即可.【詳解】解:(1),;故答案為(2)原式=;(3)已知等式整理得:所以,原方程即:,方程的兩邊同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,檢驗:把x=3代入x(x+5)=24≠0,∴原方程的解為:x=3.【點睛】本題主要考查學生的歸納總結能力,關鍵在于根據簡單的數的運算尋找規(guī)律,是考試的熱點.15.(1)1,2,3;(2)答案見解析;(3)答案見解析;(4)答案見解析.【解析】【分析】(1)根據等腰三角形的性質、矩形的性質以及等邊三角形的性質進行判斷即可;(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進行畫圖即可;(3)長方形具有兩條對稱軸,在長方形的右側補出與左側一樣的圖形,即可構造出一個恰好有2條對稱軸的凸六邊形;(4)在等邊三角形的基礎上加以修改,即可得到恰好有3條對稱軸的凸六邊形.【詳解】解:(1)非等邊的等腰三角形有1條對稱軸,非正方形的長方形有2條對稱軸,等邊三角形有3條對稱軸,故答案為1,2,3;(2)恰好有1條對稱軸的凸五邊形如圖中所示.(3)恰好有2條對稱軸的凸六邊形如圖所示.(4)恰好有3條對稱軸的凸六邊形如圖所示.16.(1),理由詳見解析;(2),理由詳見解析;(3)3或1【解析】【分析】(1)根據等邊三角形的性質、三線合一的性質證明即可;(2)根據等邊三角形的性質,證明△≌△即可;(3)注意區(qū)分當點在的延長線上時和當點在的延長線上時兩種情況,不要遺漏.【詳解】解:(1),理由如下:,∵△是等邊三角形,,點為的中點,,,,,,;故答案為:;(2),理由如下:如圖3:∵△為等邊三角形,且EF∥BC,,,;;,,,在△與△中,,∴△≌△(AAS),,∴△為等邊三角形,,.(3)①如圖4,當點在的延長線上時,過點作EF∥BC,交的延長線于點:則,;,;∵△為等邊三角形,,,,;而,,;在△和△中,,∴△≌△(AAS),;∵△為等邊三角形,,,;②如圖5,當點在的延長線上時,過點作EF∥BC,交的延長線于點:類似上述解法,同理可證:,,.【點睛】本題考查等邊三角形的性質、全等三角形的判定和性質.熟練掌握等邊三角形的性質,構造合適的全等三角形是解題的關鍵.17.(1)EM⊥CF,理由見解析;(2)證明見解析;(3)不變,且∠NEM=45°,理由見解析.【解析】【分析】(1)EM⊥CF,分別利用角平分線的性質、平行線的性質、三角形的內角和定理進行求證即可;(2)根據垂直定義和三角形的內角和定理證得∠DCO+∠CDO=90°,∠ECP+∠EPC=90°,再利用等角的余角相等和對頂角相等即可證得結論;(3)不變,且∠NEM=45°,先利用平行線的性質得到∠AEC=∠ECO=2∠ECP,進而有∠AEP=∠CEP+∠AEC=90°+2∠ECP,再由角平分線的定義∠NEP=∠AEN=45°+∠ECP,再根據同角的余角相等得到∠ECP=∠MEP,然后等量代換證得∠NEM=45°,是定值.【詳解】解:(1)EM⊥CF,理由如下:∵CF平分∠ECO,EM平分∠FEC,∴∠ECF=∠FCO=,∠FEM=∠CEM=∵AB∥x軸∴∠ECO+∠CEF=180°∴∠EMC=180°-(∠CEM+∠ECF)=180°-90°=90°∴EM⊥CF(2)由題得,∠EOC=90°∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025黑龍江東北林業(yè)大學黨委學生工作部校內招聘4人考前自測高頻考點模擬試題及一套參考答案詳解
- 2025貴州省職工醫(yī)院第十三屆貴州人博會引進人才13人考前自測高頻考點模擬試題附答案詳解
- 2025江蘇省宿遷市沭陽縣面向普通高校應屆師范類畢業(yè)生招聘16人(第二批次)考前自測高頻考點模擬試題附答案詳解(考試直接用)
- 2025年廣東江門開平市公安局第一批警務輔助人員招聘59人考前自測高頻考點模擬試題附答案詳解(完整版)
- 2025年中國即溶分離乳清蛋白行業(yè)市場分析及投資價值評估前景預測報告
- 2025廣西桂林荔浦市公安局招聘綜治網格長(一村一輔警)43人模擬試卷及一套完整答案詳解
- 2025年中國環(huán)氧烴基硅烷行業(yè)市場分析及投資價值評估前景預測報告
- 2025廣東廣州天河區(qū)童時光幼兒園招聘1人考前自測高頻考點模擬試題及1套參考答案詳解
- 2025內蒙古巴彥淖爾市能源(集團)有限公司招聘48人考前自測高頻考點模擬試題(含答案詳解)
- 2025年濰坊市寒亭區(qū)人民檢察院公開招聘工作人員模擬試卷附答案詳解(典型題)
- 2025綜合能力測試真題題庫及答案
- 2025-2026學年滬教牛津版(深圳用)小學英語五年級上冊教學計劃及進度表
- 帶狀皰疹后神經痛護理查房
- 保密文印管理辦法
- 慢性病患者的安全用藥監(jiān)護
- 肝癌的中醫(yī)護理
- 【公開課】+動物細胞(教學課件)生物人教版2024七年級上冊
- 高血糖健康宣教
- 【城市道路監(jiān)理大綱】市政一級主干道路工程監(jiān)理大綱
- 艾梅乙反歧視培訓課件
- DB64-266-2018 建筑工程資料管理規(guī)程
評論
0/150
提交評論