




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川遂寧市第二中學校7年級數學下冊第四章三角形達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,點F,C在BE上,AC=DF,BF=EC,AB=DE,AC與DF相交于點G,則與2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B2、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.3、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數是()A.1 B.2 C.3 D.44、如圖,點O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,則OC的長為()A.3 B.4 C.5 D.65、如圖,在和中,,,,,連接,交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數為()A.1個 B.2個 C.3個 D.4個6、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④7、如圖,,,,則下列結論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④8、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm9、如圖,為了估計一池塘岸邊兩點A,B之間的距離,小穎同學在池塘一側選取了一點P,測得,那么點A與點B之間的距離不可能是()A. B. C. D.10、如圖,在中,AD、AE分別是邊BC上的中線與高,,CD的長為5,則的面積為()A.8 B.10 C.20 D.40第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.2、如圖,點E,F分別為線段BC,DB上的動點,BE=DF.要使AE+AF最小值,若用作圖方式確定E,F,則步驟是_____.3、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點P從點A出發(fā)沿線段AC以每秒1個單位長度的速度向終點C運動,點Q從點B出發(fā)沿折線BC﹣CA以每秒3個單位長度的速度向終點A運動,P、Q兩點同時出發(fā).分別過P、Q兩點作PE⊥l于E,QF⊥l于F,當△PEC與△QFC全等時,CQ的長為______.4、如圖,ABDC,ADBC,AC與BD交于點O,EF經過點O,與AD、BC分別交于點E和F,則圖中共有___對全等三角形.5、如圖,A、F、C、D在同一條直線上,△ABC≌△DEF,AF=1,FD=3.則線段FC的長為_____.6、邊長為1的小正方形組成如圖所示的6×6網格,點A,B,C,D,E,F,G,H都在格點上.其中到四邊形ABCD四個頂點距離之和最小的點是_________.7、如圖,于點D,于點E,BD,CE交于點F,請你添加一個條件:______(只添加一個即可),使得≌8、在新年聯(lián)歡會上,老師設計了“你說我畫”的游戲.游戲規(guī)則如下:甲同學需要根據乙同學提供的三個條件畫出形狀和大小都確定的三角形.已知乙同學說出的前兩個條件是“,”.現僅存下列三個條件:①;②;③.為了甲同學畫出形狀和大小都確定的,乙同學可以選擇的條件有:______.(填寫序號,寫出所有正確答案)9、如圖,,則的長為________.10、如圖,AC,BD相交于點O,若使,則還需添加的一個條件是_____________.(只要填一個即可)三、解答題(6小題,每小題10分,共計60分)1、如圖1,AE與BD相交于點C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點P從點A出發(fā),沿A→B→A方向以3cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點A時,P、Q兩點同時停止運動.設點P的運動時間為t(s).連接PQ,當線段PQ經過點C時,直接寫出t的值為.2、如圖,E為AB上一點,BD∥AC,AB=BD,AC=BE.求證:BC=DE.3、已知AMCN,點B在直線AM、CN之間,AB⊥BC于點B.(1)如圖1,請直接寫出∠A和∠C之間的數量關系:.(2)如圖2,∠A和∠C滿足怎樣的數量關系?請說明理由.(3)如圖3,AE平分∠MAB,CH平分∠NCB,AE與CH交于點G,則∠AGH的度數為.4、如圖,在中,,,點D是內一點,連接CD,過點C作且,連接AD,BE.求證:.5、如圖,在每個小正方形的邊長均相等的網格中,△ABC的頂點均在格點(網格線的交點)上.(1)線段CD將△ABC分成面積相等的兩個三角形,且點D在邊AB上,畫出線段CD.(2)△CBE≌△CBD,且點E在格點上,畫出△CBE.6、在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當直線MN繞點C旋轉到圖①的位置時,易證△ADC≌△CEB(不需要證明),進而得到DE、AD、BE之間的數量關系為.(探究)(2)當直線MN繞點C旋轉到圖②的位置時,求證:DE=AD-BE.(3)當直線MN繞點C旋轉到圖③的位置時,直接寫出DE、AD、BE之間的數量關系.-參考答案-一、單選題1、C【詳解】由題意根據等式的性質得出BC=EF,進而利用SSS證明△ABC與△DEF全等,利用全等三角形的性質得出∠ACB=∠DFE,最后利用三角形內角和進行分析解答.【分析】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故選:C.【點睛】本題考查全等三角形的判定與性質,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).2、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關鍵.3、D【分析】首先證明△ABE≌△BCF,再利用角的關系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據題意得,FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質,熟練地綜合應用全等三角形以及正方形的性質,證明邊相等和角相等,是解決本題的關鍵.4、C【分析】證明△AOB≌△COD推出OB=OD,OA=OC,即可解決問題.【詳解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故選C.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是正確尋找全等三角形解決問題.5、C【分析】由全等三角形的判定及性質對每個結論推理論證即可.【詳解】∵∴∴又∵,∴∴故①正確∵∴由三角形外角的性質有則故②正確作于,于,如圖所示:則°,在和中,,∴,∴,在和中,∴,∴∴平分故④正確假設平分則∵∴即由④知又∵為對頂角∴∴∴∴在和中,∴即AB=AC又∵故假設不符,故不平分故③錯誤.綜上所述①②④正確,共有3個正確.故選:C.【點睛】本題考查了全等三角形的判定及性質,靈活的選擇全等三角形的判定的方法是解題的關鍵,從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應相等,這樣就可以利用題目中的已知邊角迅速、準確地確定要補充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.6、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結合線段的和差以及三角形三邊的關系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關系,線段之間的關系,正確分類討論是解題關鍵.7、B【分析】根據全等三角形的性質直接判定①②,則有,然后根據角的和差關系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯誤,④正確,綜上所述:正確的有①②④;故選B.【點睛】本題主要考查全等三角形的性質,熟練掌握全等三角形的性質是解題的關鍵.8、C【分析】由題意根據“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對各選項進行逐一分析即可.【詳解】解:根據三角形的三邊關系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點睛】本題主要考查三角形三邊關系,注意掌握判斷能否組成三角形的簡便方法是看較小的兩個數的和是否大于第三個數.9、D【分析】首先根據三角形的三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,求出AB的取值范圍,然后再判斷各選項是否正確.【詳解】解:∵PA=100m,PB=90m,∴根據三角形的三邊關系得到:,∴,∴點A與點B之間的距離不可能是20m,故選A.【點睛】本題主要考查了三角形的三邊關系,掌握三角形兩邊只差小于第三邊、兩邊之和大于第三邊是解題的關鍵.10、C【分析】根據三角形中線的性質得出CB的長為10,再用三角形面積公式計算即可.【詳解】解:∵AD是邊BC上的中線,CD的長為5,∴CB=2CD=10,的面積為,故選:C.【點睛】本題考查了三角形中線的性質和面積公式,解題關鍵是明確中線的性質求出底邊長.二、填空題1、AB=AD(答案不唯一)【分析】根據SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關鍵是熟知全等三角形的判定定理.2、①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點【分析】按照①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點;如圖,點即為所求.故答案為:①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點.【點睛】本題考查了作一個角等于已知角、兩點之間線段最短、作線段、全等三角形的判定與性質等知識點,熟練掌握尺規(guī)作圖的方法是解題關鍵.3、7或3.5【分析】分兩種情況:(1)當P在AC上,Q在BC上時;(2)當P在AC上,Q在AC上時,即P、Q重合時;【詳解】解:當P在AC上,Q在BC上時,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當P在AC上,Q在AC上時,即P、Q重合時,則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當△PEC與△QFC全等時,滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點睛】本題主要考查了全等三角形的性質,根據題意得出關于的方程是解題的關鍵.4、6【分析】根據平行線的性質得出∠DAC=∠BCA,∠DCA=∠BAC,根據全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據全等三角形的性質得出AD=CB,AB=CD根據全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據全等三角形的性質定理得出AO=CO,BO=DO,根據全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點睛】本題考查了全等三角形的判定定理和性質定理,平行線的性質等知識點,能熟記全等三角形的判定定理和性質定理是解此題的關鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對應邊相等,對應角相等.5、【分析】根據全等三角形的性質得出AC=FD=3,再求出FC即可.【詳解】解:∵△ABC≌△DEF,FD=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案為:2.【點睛】本題主要是考查了全等三角形的性質,熟練應用全等三角形的性質,找到對應相等的邊,是求解該問題的關鍵.6、E【分析】到四邊形ABCD四個頂點距離之和最小的點是對角線的交點,連接對角線,直接判斷即可.【詳解】如圖所示,連接BD、AC、GA、GB、GC、GD,∵,,∴到四邊形ABCD四個頂點距離之和最小是,該點為對角線的交點,根據圖形可知,對角線交點為E,故答案為:E.【點睛】本題考查了三角形三邊關系,解題關鍵是通過連接輔助線,運用三角形三邊關系判斷點的位置.7、(答案不唯一)【分析】由題意依據全等三角形的判定條件進行分析即可得出答案.【詳解】解:∵于點D,于點E,∴,∵,∴當時,≌(AAS).故答案為:.【點睛】本題考查三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據已知結合圖形及判定方法選擇條件是正確解答本題的關鍵.8、②【分析】根據兩邊及其夾角對應相等的兩個三角形全等,即可求解.【詳解】解:①若選,是邊邊角,不能得到形狀和大小都確定的;②若選,是邊角邊,能得到形狀和大小都確定的;③若選,是邊邊角,不能得到形狀和大小都確定的;所以乙同學可以選擇的條件有②.故答案為:②【點睛】本題主要考查了全等三角形的判定,熟練掌握兩邊及其夾角對應相等的兩個三角形全等是解題的關鍵.9、3【分析】根據,可得到,再由,可得,從而得到,即可求解.【詳解】解:∵,∴,∵,∴,即,∴,∴.故答案為:3【點睛】本題主要考查了全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題的關鍵.10、OA=OD或AB=CD或OB=OC【分析】添加條件是,根據推出兩三角形全等即可.【詳解】解:,理由是:在和中,,理由是:在和中,,理由是:在和中,故答案為:OA=OD或AB=CD或OB=OC.【點睛】本題主要考查了全等三角形的判定,解題的關鍵是掌握全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件,若已知兩邊對應相等,則找它們的夾角或第三邊;若已知兩角對應相等,則必須再找一組對邊對應相等,且要是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個角的另一組對應鄰邊.三、解答題1、(1)見詳解;(2)見詳解;(3)1或2【分析】(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠E,可證AB∥DE;(2)由“ASA”可證△DCQ≌△BCP,可得CP=CQ;(3)由全等三角形的性質可得DQ=BP,列出方程可求解.【詳解】解:(1)證明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)證明:∵AB∥DE,∴∠B=∠D,在△DCQ和△BCP中,,∴△DCQ≌△BCP(ASA),∴CP=CQ;(3)解:由(2)可知:當線段PQ經過點C時,△DCQ≌△BCP,可得DQ=BP,∴4﹣3t=t或3t﹣4=t,∴t=1或2.故答案為:1或2.【點睛】本題考查了全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解本題的關鍵.2、見解析【分析】根據平行線的性質可得,利用全等三角形的判定定理即可證明.【詳解】證明:∵,∴.在和中,,∴,∴.【點睛】題目主要考查全等三角形的判定定理和平行線的性質,熟練掌握全等三角形的判定定理是解題關鍵.3、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,見解析;(3)45°【分析】(1)過點B作BE∥AM,利用平行線的性質即可求得結論;(2)過點B作BE∥AM,利用平行線的性質即可求得結論;(3)利用(2)的結論和三角形的外角等于和它不相鄰的兩個內角的和即可求得結論.【詳解】(1)過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案為:∠A+∠C=90°;(2)∠A和∠C滿足:∠C﹣∠A=90°.理由:過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)設CH與AB交于點F,如圖,∵AE平分∠MAB,∴∠GAF=∠MAB,∵CH平分∠NCB,∴∠BCF=∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案為:45°.【點睛】本題考查平行線的性質以及三角形外角的性質,由題作出輔助線是解題的關鍵.4、證明見解析.【分析】先根據角的和差可得,再根據三角形全等的判定定理證出,然后根據全等三角形的性質即可得證.【詳解】證明:,,,,,在和中,,,.【點睛】本題考查了三角形全等的判定定理與性質等知識點,熟練掌握三角形全等的判定方法是解題關鍵.5、(1)見解析;(2)見解析【分析】(1)根據三角形一邊上的中線將三角形面積平分,所以找到AB的中點D,連接CD即可;(2)根據全等三角形的性質得到BE=BD,CE=CD,進而找到E點即可解答.【詳解】解:(1)∵線段CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省長春市南關區(qū)2024-2025學年下學期八年級期末考試物理試卷(含解析)
- 2025至2030年中國物聯(lián)網生態(tài)圈行業(yè)市場深度分析及投資戰(zhàn)略咨詢報告
- 2025至2030年中國排油煙機行業(yè)市場深度研究及投資戰(zhàn)略咨詢報告
- 2025至2030年中國汽車膜行業(yè)市場調查研究及發(fā)展趨勢預測報告
- 2025至2030年中國辦公桌行業(yè)發(fā)展監(jiān)測及市場發(fā)展?jié)摿︻A測報告
- MySQL數據庫應用實戰(zhàn)教程(慕課版)(第2版)實訓指導-7-11 降序索引
- 實踐育人導向下初中數學單元應用型作業(yè)設計研究
- “讀繪寫”:小學低年級語文閱讀教學的新模式
- 個人委托人事代理協(xié)議書
- oracle合同銷售銷售協(xié)議
- 導游服務行業(yè)相關項目經營管理報告
- 【特變電工-我的大學讀后感2100字】
- CJJ94-2009 城鎮(zhèn)燃氣室內工程施工與質量驗收規(guī)范
- 患者登記與管理制度
- 代理商區(qū)域保護協(xié)議書范本
- 初中英語比較級和最高級專項練習題含答案
- 《護理綜合實訓》 課程標準
- 校園超市經營投標方案(技術方案)
- 2024量子人工智能技術白皮書-量子信息網絡產業(yè)聯(lián)盟-2024.1
- 專利資產評估指導意見講解
- 3-4歲幼兒園小學美術PPT課件教案教程創(chuàng)意幼教手工《解不開的九連環(huán)》
評論
0/150
提交評論