




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省奉化市中考數(shù)學(xué)真題分類(勾股定理)匯編重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)的點(diǎn)F處,連接CF,則CF的長(zhǎng)為()A. B. C. D.2、如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為2cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈達(dá)到點(diǎn)B,那么所用細(xì)線最短需要(
)A.11cm B.2cm C.(8+2)cm D.(7+3)cm3、若a,b為直角三角形的兩直角邊,c為斜邊,下列選項(xiàng)中不能用來(lái)證明勾股定理的是(
)A. B.C. D.4、如圖,點(diǎn),在直線的同側(cè),到的距離,到的距離,已知,是直線上的一個(gè)動(dòng)點(diǎn),記的最小值為,的最大值為,則的值為(
)A.160 B.150 C.140 D.1305、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b.若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為A.9 B.6 C.4 D.36、我圖古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn)水深幾何?(注:丈、尺是長(zhǎng)度單位,1丈=10尺)意思為:如圖,有一個(gè)邊長(zhǎng)為1丈的正方形水池,在水池正中央有一根蘆葦,它高出水面1尺,如果把這根蘆葦拉向水池一邊的岸邊,它的頂端恰好碰到池邊的水面.則這根蘆葦?shù)拈L(zhǎng)度是(
)A.5尺 B.10尺 C.12尺 D.13尺7、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個(gè)正方形的面積和為(
)A.5 B.9 C.16 D.25第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、無(wú)蓋圓柱形杯子的展開圖如圖所示.將一根長(zhǎng)為20cm的細(xì)木筷斜放在該杯子內(nèi),木筷露在杯子外面的部分至少有__________cm.2、如圖,圓柱形無(wú)蓋玻璃容器,高18cm,底面周長(zhǎng)為60cm,在外側(cè)距下底1cm的點(diǎn)C處有一蜘蛛,與蜘蛛相對(duì)的圓柱形容器的上口外側(cè)距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長(zhǎng)度為__________cm(容器壁厚度忽略不計(jì)).3、我國(guó)古代九章算術(shù)中有數(shù)學(xué)發(fā)展史上著名的“葭生池中”問(wèn)題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn):葭長(zhǎng)幾何?(1丈=10尺).意思是:有一個(gè)長(zhǎng)方體池子,底面是邊長(zhǎng)為1丈的正方形,中間有蘆葦,把高出水面1尺的蘆葦拉向池邊(蘆葦沒(méi)有折斷),剛好貼在池邊上,問(wèn):蘆葦長(zhǎng)多少尺?答:蘆葦長(zhǎng)____________尺.4、已知,在中,,,,則的面積為__.5、在一棵樹的5米高B處有兩個(gè)猴子為搶吃池塘邊水果,一只猴子爬下樹跑到A處(離樹10米)的池塘邊.另一只爬到樹頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過(guò)的距離相等,則這棵樹高_(dá)______米.6、如圖,在的正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)、、均在格點(diǎn)上,則______.7、如圖,將矩形紙片ABCD沿EF折疊,使D點(diǎn)與BC邊的中點(diǎn)D′重合.若BC=8,CD=6,則CF的長(zhǎng)為_________________.8、圖,在菱形ABCD中,,是銳角,于點(diǎn)E,M是AB的中點(diǎn),連接MD,若,則的值為______.三、解答題(7小題,每小題10分,共計(jì)70分)1、(1)如圖1是一個(gè)重要公式的幾何解釋,請(qǐng)你寫出這個(gè)公式;(2)伽菲爾德(1881年任美國(guó)第20屆總統(tǒng))利用(1)中的公式和圖2證明了勾股定理(1876年4月1日發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試證明過(guò)程.說(shuō)明:.2、閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題:∠MBN=30°,點(diǎn)A為射線BM上一點(diǎn),且AB=4,點(diǎn)C為射線BN上動(dòng)點(diǎn),連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當(dāng)AC⊥BN時(shí),求BD的長(zhǎng).小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對(duì)全等的三角形,再利用∠EBC=90°,從而將問(wèn)題解決(如圖1).請(qǐng)回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長(zhǎng)為.(2)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到AC時(shí),求BD的長(zhǎng);(3)動(dòng)點(diǎn)C在射線BN上運(yùn)動(dòng),求△ABD周長(zhǎng)最小值.3、《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問(wèn)題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語(yǔ)歡嬉.良工高士素好奇,算出索長(zhǎng)有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問(wèn)繩索有多長(zhǎng).”4、閱讀理解:課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀察:3,4,5;5,12,13;7,24,25;9,40,41;……學(xué)生發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒(méi)有間斷過(guò),于是王老師提出以下問(wèn)題讓學(xué)生解決.(1)請(qǐng)你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11,_________,_________;(2)若第一個(gè)數(shù)用字母(為奇數(shù),且)表示,則后兩個(gè)數(shù)用含的代數(shù)式分別怎么表示?聰明的小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律:,,,……于是他很快表示出了第二個(gè)數(shù)為,則用含的代數(shù)式表示第三個(gè)數(shù)為_________.(3)用所學(xué)知識(shí)說(shuō)明(2)中用表示的三個(gè)數(shù)是勾股數(shù).5、如圖,某海岸線MN的方向?yàn)楸逼珫|75°,甲,乙兩船分別向海島C運(yùn)送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.6、勾股定理是人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,在《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,漢代數(shù)學(xué)家趙爽為證明勾股定理創(chuàng)制的“趙爽弦圖”也流傳至今.迄今為止已有多種證明勾股定理的方法.下面是數(shù)學(xué)課上創(chuàng)新小組驗(yàn)證過(guò)程的一部分.請(qǐng)認(rèn)真閱讀并根據(jù)他們的思路將后續(xù)的過(guò)程補(bǔ)充完整:將兩張全等的直角三角形紙片按圖所示擺放,其中,點(diǎn)在線段上,點(diǎn)在邊兩側(cè),試證明:.7、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點(diǎn)D為BC的中點(diǎn),.(1)求證:△ABC≌△DEB.(2)連結(jié)AE,若BC=4,直接寫出AE的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】連接BF,(見(jiàn)詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點(diǎn)E是BC的中點(diǎn),可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長(zhǎng)度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長(zhǎng)度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點(diǎn)】此題考查矩形的性質(zhì)和折疊問(wèn)題,解題關(guān)鍵在于利用好折疊的性質(zhì),對(duì)應(yīng)點(diǎn)的連線被折痕垂直平分.2、B【解析】【詳解】要求所用細(xì)線的最短距離,需將長(zhǎng)方體的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.解:將長(zhǎng)方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..3、A【解析】【分析】由題意根據(jù)圖形的面積得出的關(guān)系,即可證明勾股定理,分別分析即可得出答案【詳解】解:A、不能利用圖形面積證明勾股定理;B、根據(jù)面積得到;C、根據(jù)面積得到,整理得;D、根據(jù)面積得到,整理得.故選:A.【考點(diǎn)】本題考查勾股定理的證明,熟練掌握利用圖形的面積得出的關(guān)系,即可證明勾股定理.4、A【解析】【分析】作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過(guò)點(diǎn)作直線,在根據(jù)勾股定理求出線段的長(zhǎng),即為PA+PB的最小值,延長(zhǎng)AB交MN于點(diǎn),此時(shí),由三角形三邊關(guān)系可知,故當(dāng)點(diǎn)P運(yùn)動(dòng)到時(shí)最大,過(guò)點(diǎn)B作由勾股定理求出AB的長(zhǎng)就是的最大值,代入計(jì)算即可得.【詳解】解:如圖所示,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過(guò)點(diǎn)作直線,∵,,,∴,,,在中,根據(jù)勾股定理得,∴,即PA+PB的最小值是;如圖所示,延長(zhǎng)AB交MN于點(diǎn),∵,,∴當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)時(shí),最大,過(guò)點(diǎn)B作,則,∴,在中,根據(jù)勾股定理得,,∴,即,∴,故選A.【考點(diǎn)】本題考查了最短線路問(wèn)題和勾股定理,解題的關(guān)鍵是熟知兩點(diǎn)之間線段最短及三角形的三邊關(guān)系.5、D【解析】【分析】由題意可知:中間小正方形的邊長(zhǎng)為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長(zhǎng).【詳解】解:由題意可知:中間小正方形的邊長(zhǎng)為:,每一個(gè)直角三角形的面積為:,,,或(舍去),故選:D.【考點(diǎn)】本題考查勾股定理,解題的關(guān)鍵是熟練運(yùn)用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.6、D【解析】【分析】依題意,蘆葦?shù)拈L(zhǎng)度為直角三角形的斜邊,水深為一直角邊,另一直角邊為5尺,由勾股定理即可列出方程,進(jìn)而得到答案.【詳解】解:設(shè)水深x尺,則蘆葦?shù)拈L(zhǎng)度為(x+1)尺,依題意,由勾股定理,得:,解得,所以蘆葦?shù)拈L(zhǎng)度為13尺.故選D.【考點(diǎn)】本題考查勾股定理的應(yīng)用,將題目描述問(wèn)題轉(zhuǎn)化成直角三角形求邊長(zhǎng)的問(wèn)題是解題的關(guān)鍵.7、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個(gè)正方形的面積和為25故選:D【考點(diǎn)】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.二、填空題1、5【解析】【分析】根據(jù)題意直接利用勾股定理得出杯子內(nèi)的筷子長(zhǎng)度,進(jìn)而得出答案.【詳解】解:由題意可得:杯子內(nèi)的筷子長(zhǎng)度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,正確得出杯子內(nèi)筷子的長(zhǎng)是解決問(wèn)題的關(guān)鍵.2、34【解析】【分析】首先展開圓柱的側(cè)面,即是矩形,接下來(lái)根據(jù)兩點(diǎn)之間線段最短,可知CF的長(zhǎng)即為所求;然后結(jié)合已知條件求出DF與CD的長(zhǎng),再利用勾股定理進(jìn)行計(jì)算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長(zhǎng)度是34cm.故答案為34.【考點(diǎn)】此題是有關(guān)最短路徑的問(wèn)題,關(guān)鍵在于把立體圖形展開成平面圖形,找出最短路徑;3、13【解析】【分析】設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)勾股定理列方程求解即可.【詳解】解:根據(jù)題意,設(shè)水深OB=x尺,則蘆葦長(zhǎng)OA'=(x+1)尺,根據(jù)題意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案為:13.【考點(diǎn)】此題考查了勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意設(shè)出未知數(shù),根據(jù)勾股定理列方程求解.4、2或14#14或2【解析】【分析】過(guò)點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長(zhǎng),即可求解.【詳解】解:過(guò)點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.5、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹高為CD=5+x=7.5(米),答:樹高為7.5米.故答案為:7.5.【考點(diǎn)】本題考查了勾股定理在實(shí)際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.6、45°##45度【解析】【分析】取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計(jì)算PQ=QB,進(jìn)而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點(diǎn)Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.7、【解析】【分析】設(shè),在中利用勾股定理求出x即可解決問(wèn)題.【詳解】解:∵是的中點(diǎn),,,∴,由折疊的性質(zhì)知:,設(shè),則,在中,根據(jù)勾股定理得:,即:,解得,∴.故答案為:【考點(diǎn)】本題考查翻折變換、勾股定理,解題的關(guān)鍵是利用翻折不變性解決問(wèn)題,學(xué)會(huì)轉(zhuǎn)化的思想,利用方程的去思考問(wèn)題,屬于中考??碱}型.8、【解析】【分析】延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)首先證明,設(shè),利用勾股定理構(gòu)建方程求出x即可解決問(wèn)題.【詳解】延長(zhǎng)DM交CB的延長(zhǎng)線于點(diǎn)H,四邊形ABCD是菱形,,,,,,≌,,,,設(shè),,,,,,或舍棄,,故答案為.【考點(diǎn)】本題考查了菱形的性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),正確添加輔助線,構(gòu)造全等三角形解決問(wèn)題是解決本題的關(guān)鍵.三、解答題1、(1);(2)證明見(jiàn)解析.【解析】【分析】(1)根據(jù)正方形面積計(jì)算公式解答;(2)利用面積法證明即可得到結(jié)論.【詳解】(1);(2)如圖,∵Rt△DEC≌Rt△EAB,∴∠DEC=∠EAB,DE=AE,∵,∴,∴△AED為等腰直角三角形,∵,∴,即,∵,∴,∴.【考點(diǎn)】此題考查勾股定理的證明,完全平方公式在幾何圖形中的應(yīng)用,正確理解各部分圖形之間的關(guān)系,正確分析它們之間的面積等量關(guān)系是解題的關(guān)鍵.2、(1)ABD,ACE,;(2)BD的長(zhǎng)為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長(zhǎng)度;(2)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長(zhǎng)度,再利用勾股定理即可求出CE的長(zhǎng)度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',此時(shí)BD+AC'有最小值即為AF,此時(shí)△ABD周長(zhǎng)=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點(diǎn)H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時(shí)BD的長(zhǎng)為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長(zhǎng)EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時(shí)BD+AC'有最小值即為AF,∴此時(shí)△ABD周長(zhǎng)=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此時(shí)△ABD周長(zhǎng)為:+4.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),勾股定理等,作出合適的輔助線,構(gòu)造出全等三角形是解題的關(guān)鍵.3、尺【解析】【分析】設(shè)秋千的繩索長(zhǎng)為x尺,根據(jù)題意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【詳解】解:設(shè)秋千的繩索長(zhǎng)為x尺,根據(jù)題意可列方程為:x2=102+(x-4)2,解得:x=,∴秋千的繩索長(zhǎng)為尺.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AB、AC的長(zhǎng),掌握直角三角形中兩直角邊的平方和等于斜邊的平方.4、(1)60,61(2)(3)見(jiàn)解析【解析】【分析】(1)分析所給四組的勾股數(shù):3、4、5;5、12、13;7、24、25;9、40、41;可得下一組一組勾股數(shù):11,60,61;(2)根據(jù)所提供的例子發(fā)現(xiàn)股是勾的平方減去1的二分之一,弦是勾的平方加1的二分之一;(3)依據(jù)勾股定理的逆定理進(jìn)行證明即可.(1)解:∵3、4、5;5、12、13;7、24、25;9、40、41;…,∴11,60,61;故答案為:60,61;(2)解:第一個(gè)數(shù)用字母a(a為奇數(shù),且a≥3)表示,第二數(shù)為;則用含a的代數(shù)式表示第三個(gè)數(shù)為;故答案為:;(3)解:∵,,∴,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年美術(shù)品跨界合作虛擬現(xiàn)實(shí)體驗(yàn)合同樣本
- 二零二五年度節(jié)能減排技術(shù)改造項(xiàng)目借款合同
- 2025版物聯(lián)網(wǎng)設(shè)備技術(shù)保密及合作協(xié)議范本
- 二零二五年度新型節(jié)能門窗生產(chǎn)與銷售合同
- 2025版房地產(chǎn)投資民間借貸居間服務(wù)合同模板
- 二零二五版企業(yè)高校學(xué)生勤工儉學(xué)合同模板
- 二零二五版建筑工程施工合同解除協(xié)議書范本
- 2025房地產(chǎn)居間服務(wù)合同:養(yǎng)老公寓項(xiàng)目代理
- 二零二五年螺旋鋼管行業(yè)信息共享合同
- 2025版耐候性建筑密封膠產(chǎn)品定制加工合同
- 母嬰阻斷知識(shí)培訓(xùn)課件
- 暖通空調(diào)施工方案
- 基于供應(yīng)鏈管理的港口物流服務(wù)
- 鐵路運(yùn)輸效率評(píng)價(jià)指標(biāo)體系-洞察分析
- 《ETF知識(shí)講座》課件
- 金蝶云蒼開發(fā)工程師(初級(jí))認(rèn)證考試題及答案
- 水噴砂除銹施工方案
- 四川省成都市武侯區(qū)西川實(shí)驗(yàn)學(xué)校2024-2025學(xué)年九年級(jí)上學(xué)期11月期中考試數(shù)學(xué)試題(無(wú)答案)
- 2024年中國(guó)鐵路機(jī)車用電動(dòng)刮雨器市場(chǎng)調(diào)查研究報(bào)告
- 石膏娃娃課件教學(xué)課件
- 婚姻法普法講座課件
評(píng)論
0/150
提交評(píng)論