北師大小學(xué)數(shù)學(xué)總復(fù)習(xí)數(shù)的運(yùn)算學(xué)習(xí)教案_第1頁
北師大小學(xué)數(shù)學(xué)總復(fù)習(xí)數(shù)的運(yùn)算學(xué)習(xí)教案_第2頁
北師大小學(xué)數(shù)學(xué)總復(fù)習(xí)數(shù)的運(yùn)算學(xué)習(xí)教案_第3頁
北師大小學(xué)數(shù)學(xué)總復(fù)習(xí)數(shù)的運(yùn)算學(xué)習(xí)教案_第4頁
北師大小學(xué)數(shù)學(xué)總復(fù)習(xí)數(shù)的運(yùn)算學(xué)習(xí)教案_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

會(huì)計(jì)學(xué)1北師大小學(xué)數(shù)學(xué)總復(fù)習(xí)(fùxí)數(shù)的運(yùn)算第一頁,共50頁。1.整數(shù)(zhěngshù)加、減法1.把幾個(gè)數(shù)合并成一個(gè)(yīɡè)數(shù)的運(yùn)算叫做加法。加數(shù)(jiāshù)+加數(shù)(jiāshù)=和

加數(shù)=和-加數(shù)2.已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算叫做減法。

被減數(shù)-減數(shù)=差

被減數(shù)=差+減數(shù)

減數(shù)=被減數(shù)-差加法和減法互為逆運(yùn)算第1頁/共50頁第二頁,共50頁。2.整數(shù)(zhěngshù)乘法求幾個(gè)相同加數(shù)(jiāshù)的和的簡便運(yùn)算叫做乘法。因數(shù)(yīnshù)×因數(shù)(yīnshù)=積

因數(shù)=積÷加數(shù)0乘以任何數(shù)都得0;1和任何數(shù)相乘都得任何數(shù)。即:0×a=0;1×a=a第2頁/共50頁第三頁,共50頁。3.整數(shù)(zhěngshù)除法已知兩個(gè)因數(shù)(yīnshù)的積與其中一個(gè)因數(shù)(yīnshù),求另一個(gè)因數(shù)(yīnshù)的運(yùn)算叫做除法。被除數(shù)(chúshù)÷除數(shù)(chúshù)=商

被除數(shù)=商×除數(shù)

在除法中,0不能做除數(shù)。因?yàn)?和任何數(shù)相乘都得0,所以任何一個(gè)數(shù)除以0,均得不到一個(gè)確定的商。但0除以任何數(shù)都得0,即0÷a=0.除數(shù)=被除數(shù)÷商乘法和除法互為逆運(yùn)算第3頁/共50頁第四頁,共50頁。4.小數(shù)(xiǎoshù)、分?jǐn)?shù)的加、減、乘、除法1.小數(shù)(xiǎoshù)、分?jǐn)?shù)的加、減、乘、除法的意義與整數(shù)加、減、乘、除法的意義相同。2.求幾個(gè)相同因數(shù)的積的運(yùn)算(yùnsuàn)叫做乘方。例如:3×3=32=93.乘積是1的兩數(shù)叫做互為倒數(shù)。第4頁/共50頁第五頁,共50頁。5.整數(shù)加、減法(jiǎnfǎ)運(yùn)算法則1.整數(shù)加法:相同數(shù)位(shùwèi)對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進(jìn)一。2.整數(shù)減法:相同數(shù)位對齊,從低位減起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并(hébìng)在一起,再減。第5頁/共50頁第六頁,共50頁。6.整數(shù)(zhěngshù)乘、除法運(yùn)算法則1.整數(shù)乘法:先用一個(gè)因數(shù)每一位上的數(shù)分別去乘另一個(gè)因數(shù)各個(gè)數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾(mòwěi)就對齊哪一位,然后再把各次乘得的數(shù)加起來。2.整數(shù)除法:先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位;如果不夠(bùgòu)除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠(bùgòu)商1,要補(bǔ)“0”占位。每次除得的余數(shù)要小于除數(shù)。第6頁/共50頁第七頁,共50頁。7.小數(shù)(xiǎoshù)加、減法運(yùn)算法則1.相同(xiānɡtónɡ)的數(shù)位對齊(即小數(shù)點(diǎn)要對齊)。2.然后(ránhòu)按照整數(shù)加減法法則進(jìn)行計(jì)算。3.得數(shù)里的小數(shù)點(diǎn)要和加數(shù)或被減數(shù)、減數(shù)的小數(shù)點(diǎn)對齊。4.得數(shù)的小數(shù)部分末尾有0的,要去掉。第7頁/共50頁第八頁,共50頁。7.小數(shù)乘法運(yùn)算(yùnsuàn)法則1.先按照整數(shù)(zhěngshù)乘法的計(jì)算法則進(jìn)行計(jì)算。2.看因數(shù)中一共有幾位小數(shù),就從積的右邊起數(shù)(qǐshù)幾位,點(diǎn)上小數(shù)點(diǎn);如果數(shù)位不夠就用“0”補(bǔ)。3.得數(shù)的小數(shù)部分末尾有0的,要去掉。第8頁/共50頁第九頁,共50頁。8.小數(shù)除法運(yùn)算(yùnsuàn)法則1.除數(shù)是整數(shù)的小數(shù)除法:先按照整數(shù)除法的法則去除,商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對齊(duìqí);如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。2.除數(shù)是小數(shù)的小數(shù)除法:先移動(dòng)除數(shù)的小數(shù)點(diǎn),使它變成整數(shù)(除數(shù)的小數(shù)點(diǎn)向右移動(dòng)幾位,被除數(shù)的小數(shù)點(diǎn)也向右移動(dòng)幾位_位數(shù)不夠(bùgòu)的補(bǔ)“0”),然后按照除數(shù)是整數(shù)的除法法則進(jìn)行計(jì)算。第9頁/共50頁第十頁,共50頁。9.分?jǐn)?shù)加、減法運(yùn)算(yùnsuàn)法則1.同分母分?jǐn)?shù)(fēnshù)加減法:分子相加減,分母不變。2.異分母分?jǐn)?shù)加減法:先通分,再按照(ànzhào)同分母分?jǐn)?shù)加減法的法則進(jìn)行計(jì)算。3.分?jǐn)?shù)運(yùn)算的最后結(jié)果一定要化成最簡分?jǐn)?shù),假分?jǐn)?shù)可化成帶分?jǐn)?shù)。第10頁/共50頁第十一頁,共50頁。10.分?jǐn)?shù)乘、除法(chúfǎ)運(yùn)算法則1.分?jǐn)?shù)乘整數(shù):用分?jǐn)?shù)的分子(fēnzǐ)和整數(shù)相乘的積作分子(fēnzǐ),分母不變。2.分?jǐn)?shù)乘分?jǐn)?shù):用分子(fēnzǐ)相乘的積作分子(fēnzǐ),分母相乘的積作分母。3.分?jǐn)?shù)除法:甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)。第11頁/共50頁第十二頁,共50頁。10.整數(shù)(zhěngshù)、小數(shù)、分?jǐn)?shù)的運(yùn)算順序1.整數(shù)、小數(shù)(xiǎoshù)、分?jǐn)?shù)的運(yùn)算順序相同。2.沒有括號(hào)(kuòhào)的,同級(jí)運(yùn)算從左到右依次運(yùn)算;兩級(jí)運(yùn)算,先算乘除法,后算加減法。3.有括號(hào)的,先算小括號(hào)里面的,再算中括號(hào)里面的,最后算括號(hào)外面的。4.加減法叫做第一級(jí)運(yùn)算;乘除法叫做第二級(jí)運(yùn)算。第12頁/共50頁第十三頁,共50頁。11.0和1的四則運(yùn)算(sìzéyùnsuàn)01加法a+0=a0+a=a減法a-a=0a-0=a乘法0×a=0a×0=0a×1=a1×a=a除法0÷a=0(a≠0)a÷1=aa÷a=1(a≠0)第13頁/共50頁第十四頁,共50頁。1.估算(ɡūsuàn)的意義對事物的數(shù)量或計(jì)算結(jié)果做出粗略的推斷或預(yù)測的過程叫做估算。例:某校有20個(gè)班,每班約有40多個(gè)學(xué)生(xuésheng)。經(jīng)估算可知該校的學(xué)生(xuésheng)數(shù)大約在800至1000人之間。第14頁/共50頁第十五頁,共50頁。2.估算(ɡūsuàn)的方法1.根據(jù)已知數(shù)據(jù)的最高位數(shù)字和最低位數(shù)字估算。例如(lìrú):1547+4076-2358,由于此題中的三個(gè)數(shù)最高位上的數(shù)字計(jì)算結(jié)果是3,最低位上的數(shù)字計(jì)算結(jié)果是5,所以此題的計(jì)算結(jié)果約在3000左右,并且末尾的數(shù)字一定是5。309×607,由于題中兩個(gè)數(shù)的最高位數(shù)的積是:300×600=180000,最低位的數(shù)字之積是9×7=63,所以此題的計(jì)算結(jié)果是略大于180000的六位數(shù),末位數(shù)字一定是3。第15頁/共50頁第十六頁,共50頁。2.估算(ɡūsuàn)的方法2.根據(jù)已知數(shù)據(jù)的部分高位數(shù)字估算。例如:3543+446+55,由于此題中各百位數(shù)的約是10,千位上的數(shù)字和是3,所以(suǒyǐ)原式的結(jié)果大約是4000。3456×23,由于題中各數(shù)的最高位數(shù)的積(3千×2十)是60000,又由于第一個(gè)因數(shù)第二位與第二個(gè)因數(shù)最高位數(shù)的積(4百×2十)約等于10000,所以(suǒyǐ)計(jì)算結(jié)果大約是7萬多。第16頁/共50頁第十七頁,共50頁。2.估算(ɡūsuàn)的方法3.利用四舍五入把各個(gè)已知數(shù),變成近似的整萬、整千、整百或整十。例如:56317÷812可這樣估算:56000÷800=70,此題的結(jié)果大約是70。4.利用一些(yīxiē)基本口算進(jìn)行估算。例如:1248×809,題中兩個(gè)數(shù)分別接近1250和800,利用基本口算125×8=1000,估算出結(jié)果在1000000左右。第17頁/共50頁第十八頁,共50頁。3.取近似(jìnsì)數(shù)1、四舍五入法:求一個(gè)數(shù)的近似數(shù),要看尾數(shù)的最高位上的數(shù)是幾,如果比5小,就把尾數(shù)都舍去;如果尾數(shù)最高位上的數(shù)是5或大于5,就把尾數(shù)舍去后,要向它的前一位進(jìn)1.2、去尾法:根據(jù)實(shí)際需要,所保留數(shù)后面的數(shù)字不管是幾都舍去。3、進(jìn)一法:根據(jù)實(shí)際需要,不管保留的數(shù)位(shùwèi)上右邊的第一位是幾(非零數(shù)字),前一位都加1。第18頁/共50頁第十九頁,共50頁。1.簡單(jiǎndān)應(yīng)用題1、已知乙數(shù)是甲數(shù)的幾倍,求乙數(shù)是多少。2、已知乙數(shù)是甲數(shù)的幾分之幾,求乙數(shù)是多少。3、把甲數(shù)平均分成幾份,每份是多少。4、已知一個(gè)數(shù)和每份是多少,求可以分成幾份。5、已知甲乙兩數(shù),求甲數(shù)是乙數(shù)的幾倍或求乙數(shù)是甲數(shù)的幾分之幾。6、常見數(shù)量關(guān)系:總價(jià)=單價(jià)×數(shù)量路程=速度×?xí)r間(shíjiān)工作總量=工作效率×工作時(shí)間(shíjiān)總產(chǎn)量=單產(chǎn)量×數(shù)量第19頁/共50頁第二十頁,共50頁。2.典型(diǎnxíng)應(yīng)用題·平均數(shù)問題例:一輛汽車以每小時(shí)100千米(qiānmǐ)的速度從甲地開往乙,又以每小時(shí)60千米(qiānmǐ)的速度雙乙地開往甲地,這輛汽車的平均速度是多少?分析:求汽車的平均速度可以利用公式“數(shù)量之和÷數(shù)量個(gè)數(shù)=平均數(shù)”的公式進(jìn)行(jìnxíng)計(jì)算。此題設(shè)甲乙兩地的路程為“1”,則汽車行駛的總路程為“2”,由此可求出從甲地到乙的時(shí)間和從乙到甲地用的時(shí)間,再用總路程÷總時(shí)間=平均速度。解:根據(jù)題意得:2÷答:這輛汽車的平均速度是75千米/時(shí)。第20頁/共50頁第二十一頁,共50頁。3.典型(diǎnxíng)應(yīng)用題·歸一問題例:一個(gè)(yīɡè)織布工人,在七月份織布4774米,照這樣計(jì)算,織布6930米,需要多少天?分析:此題必須先求出每天織布(zhībù)多少米(即單一量)。數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一);總數(shù)量÷單一量=份數(shù)(反歸一)。解:根據(jù)題意得:

6930÷(4774÷31)=6930÷154=45(天)答:織布6930米,需要45天。第21頁/共50頁第二十二頁,共50頁。4.典型(diǎnxíng)應(yīng)用題·歸總問題例:修一條(yītiáo)水渠,原計(jì)劃每天修800米,6天修完。實(shí)際4天修完,每天修了多少米?分析(fēnxī):因?yàn)橐蟪雒刻煨薜拈L度,就必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求出總量;歸總問題是先求出總量,再單一量。解:根據(jù)題意得:

800×6÷4=4800÷4=1200(米)答:實(shí)際每天修了1200米。第22頁/共50頁第二十三頁,共50頁。5.典型(diǎnxíng)應(yīng)用題·和差問題例:某加工廠甲班和乙班共有工人94人,因工作需要臨時(shí)從乙班調(diào)46人到甲班工作,這時(shí)乙班比甲班人數(shù)(rénshù)少12人,求原來甲班和乙班各有多少人?分析:此類題的解題關(guān)鍵:是把大小兩個(gè)(liǎnɡɡè)數(shù)的和轉(zhuǎn)化成兩個(gè)(liǎnɡɡè)大數(shù)的和(或兩個(gè)(liǎnɡɡè)小數(shù)的和),然后再求另一個(gè)數(shù)。這一題中從乙班調(diào)46人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成2個(gè)乙班,即94-12,由此得到現(xiàn)在的乙班是(94-12÷2=41(人),乙班在調(diào)出46人之前應(yīng)該為41+46=87(人),甲班為94-87=7(人)。解:根據(jù)題意得:(94-12)÷2=41(人)乙班:41+46=87(人)甲班:94-87=7(人)答:原來甲班有7人,乙班有87人。解題規(guī)律:(和+差)÷2=大數(shù)大數(shù)-差=小數(shù)(和-差)÷2=小數(shù)和-小數(shù)=大數(shù)第23頁/共50頁第二十四頁,共50頁。6.典型(diǎnxíng)應(yīng)用題·行程問題-追及問題例:甲在乙的后面28千米,兩人同時(shí)(tóngshí)同向而行,甲每小時(shí)行16千米,乙每小時(shí)行9千米,甲幾小時(shí)追上乙?分析(fēnxī):甲每小時(shí)比乙多行(16-9)千米,也就是甲每小時(shí)可以追近乙(16-9)千米,這是速度差。解:根據(jù)題意得:

28÷(16-9)=4(小時(shí))答:甲4小時(shí)可以追上乙。解題關(guān)鍵及規(guī)律:同時(shí)同向而行(速度慢的在前,快的在后):追及時(shí)間=路程÷速度差。同時(shí)同地同向而行(速度慢的在后,快的在前):路程=速度差×?xí)r間。第24頁/共50頁第二十五頁,共50頁。6.典型應(yīng)用題·行程問題(wèntí)-相遇問題(wèntí)例:甲乙兩人從相距750米的兩地相向(xiāngxiàng)走來,甲每分行80米,乙每分行70米,問甲距乙出發(fā)地多遠(yuǎn)的地方和乙相遇?分析:兩個(gè)物體以不同速度(sùdù)從兩地同時(shí)出發(fā)相向而行,并且相遇。在路程、速度(sùdù)和時(shí)間中,已知兩個(gè)量,求第三個(gè)量。此題中路程和甲乙兩人的速度(sùdù)已知,發(fā)求出乙走的路程就要先求出乙走了好長的時(shí)間(即相遇時(shí)間)。解:根據(jù)題意得:速度和:80+70=150(米/分)相遇時(shí)間:750÷150=5(分)乙行路程:70×5=350(米)答:甲距乙出發(fā)地350米處和乙相遇。解題規(guī)律:同時(shí)同地相背而行:路程=速度和×?xí)r間。

同時(shí)相向而行:相遇時(shí)間=速度和×?xí)r間速度和=路程÷相遇時(shí)間路程=速度和×相遇時(shí)間

第25頁/共50頁第二十六頁,共50頁。7.典型(diǎnxíng)應(yīng)用題·盈虧問題例:幼兒園老師(lǎoshī)給小朋友分糖,每位小朋友3粒,糖少1粒,每位小朋友2粒,糖多余13粒。問糖有幾粒?小朋友有幾人?概述:把一定數(shù)量的物品平均分給一定數(shù)量的人,在兩次分配中物品有余(盈)或不足(虧),已知余和所不足的數(shù)量,要求出物品的數(shù)量及參加分配的人數(shù)(rénshù)的一類問題稱為盈虧問題。解:根據(jù)題意得:(13+1)÷(3-2)=14(人)

3×14-1=41(粒)或2×14+13=41(粒)答:甲距乙出發(fā)地350米處和乙相遇。解題思路:(盈+虧)÷(兩次分得的差)=人數(shù)(大盈-小盈)÷(兩次分得的差)=人數(shù)(大虧-小虧)÷(兩次分得的差)=人數(shù)第26頁/共50頁第二十七頁,共50頁。8.典型應(yīng)用題·年齡(niánlíng)問題例:父親(fùqīn)今年45歲,女兒今年11歲,幾年后父親(fùqīn)的年齡是女兒的3倍?概述:已知若干人的年齡,求他們之間的某種數(shù)量關(guān)系;或已知他們年齡之間的數(shù)量關(guān)系,求這幾個(gè)人的年齡的一類問題(wèntí)稱為年齡問題(wèntí)。解:根據(jù)題意得:(45-11)÷(3-1)-11=6(年)答:6年后父親的年齡是女兒的3倍。解題思路:抓住年齡差不變的量,利用和差、和倍、差倍的知識(shí)來解決。幾年后=大小年齡之差÷倍數(shù)差-小年齡第27頁/共50頁第二十八頁,共50頁。8.典型應(yīng)用題·植樹(zhíshù)問題例1:一條公路長100米,在路的一邊從頭至尾每隔5米種一棵樹,一共需要(xūyào)種多少棵?解:根據(jù)(gēnjù)題意得:100÷5+1=21(棵)答:一共需要種21棵。解題思路:不封閉路線1、兩端植樹棵數(shù)=段數(shù)+1=總距離÷棵距+1

總距離=棵距×(棵數(shù)-1)棵距=總距離÷(棵數(shù)-1)2、一端植,另一端不植:總距離=棵距×棵數(shù)棵數(shù)=總距離÷棵距棵距=總距離÷棵數(shù)第28頁/共50頁第二十九頁,共50頁。8.典型應(yīng)用題·植樹(zhíshù)問題例2:一根木頭長100分米,現(xiàn)在要把全部(quánbù)鋸成4分米長的短木頭,每鋸開一處需要3分鐘。全部(quánbù)鋸?fù)晷枰獛追昼??解:根?jù)(gēnjù)題意得:(100÷4-1)×3=72(分鐘)答:全部鋸?fù)晷枰?2分鐘。解題思路:3、兩端都不植:棵數(shù)=總距離÷棵距-1

此題如果把“鋸開處”看作“樹”,這個(gè)問題就相當(dāng)于在不封閉的公路上兩端都不植樹的問題。第29頁/共50頁第三十頁,共50頁。8.典型(diǎnxíng)應(yīng)用題·植樹問題例3:公園中有一個(gè)圓形花壇,繞一圈正好(zhènghǎo)是100米,現(xiàn)沿花壇外圈每隔5米放一大盆花,一共可以放多少盆?解:根據(jù)(gēnjù)題意得:100÷5=20(盆)答:一共可以放20盆。解題思路:封閉路線棵數(shù)=段數(shù)=總長(周長)÷棵距

第30頁/共50頁第三十一頁,共50頁。9.典型(diǎnxíng)應(yīng)用題·雞兔同籠問題例1:雞兔同籠共50個(gè)頭(ɡètóu),170條腿。問雞兔各有多少只?解:根據(jù)(gēnjù)題意得:兔:(170-2×50)÷2=35(只)雞:50-35=15(只)或雞:(4×50-170)÷2=15(只)免:50-15=35(只)答:雞有15只,兔有35只。解題思路:算術(shù)解法解答這類問題一般采用假設(shè)法,假設(shè)全是一種動(dòng)物(如全是雞或全是兔),然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。

1、假設(shè)全是雞,則免的只數(shù)=(總腿數(shù)-2×總頭數(shù))÷22、假設(shè)全是兔,則雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2

第31頁/共50頁第三十二頁,共50頁。9.典型(diǎnxíng)應(yīng)用題·雞兔同籠問題例2:雞兔同籠,共20個(gè)頭(ɡètóu),58條腿。雞、兔各有多少只?解:設(shè)有x只兔,則有(20-x)只雞,根據(jù)(gēnjù)題意得:4x+2×(20-x)=584x+40-2x=584x-2x=58-402x=18x=9雞:20-9=11(只)答:雞有11只,兔有9只。第32頁/共50頁第三十三頁,共50頁。10.典型應(yīng)用題·搭配(dāpèi)問題例1:從甲地到乙地,可以(kěyǐ)乘火車,也可以(kěyǐ)乘汽車,還可以(kěyǐ)乘輪船。已知有8趟火車、6班汽車、4班輪船。問:在天中乘坐這些交通工具從甲地到乙地,有多少種不同的走法?解:根據(jù)(gēnjù)題意得:8+6+4=18(種)答:有18種不同的走法。解題思路:加法原理做一件事的各種方法分成好幾類,而且每一類中的任何一種方法都難完成這件事,那么完成這件事的方法,就是把每一類中的方法相加。

第33頁/共50頁第三十四頁,共50頁。10.典型應(yīng)用題·搭配(dāpèi)問題例2:用0、1、2、3四個(gè)數(shù)字可以組成(zǔchénɡ)多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?解:先確定(quèdìng)百位,可以從1、2、3三個(gè)數(shù)字中任取一個(gè),有3種方法;再確定(quèdìng)十位,可從余下的三個(gè)數(shù)字中任先取一個(gè),有3種方法,最后確定(quèdìng)個(gè)位,可以從余下的兩個(gè)數(shù)字中任取一個(gè),有2種方法。根據(jù)乘法原理,可組成的三位數(shù)字共有3×3×2=18(種)。答:用0、1、2、3四個(gè)數(shù)字可以組成18個(gè)沒有重復(fù)數(shù)字的三位數(shù)。解題思路:乘法原理當(dāng)一項(xiàng)工作可以分成若干步完成時(shí),將每一步的可選擇數(shù)相乘便得到完成這項(xiàng)工作所有可選擇的個(gè)數(shù)。第34頁/共50頁第三十五頁,共50頁。11.分?jǐn)?shù)(fēnshù)、百分?jǐn)?shù)(fēnshù)應(yīng)用題類型:求一個(gè)(yīɡè)數(shù)是另一個(gè)(yīɡè)的幾分之幾(或百分之幾)。意義:已知標(biāo)準(zhǔn)量和比較量,求比較量是標(biāo)準(zhǔn)量的幾分(jǐfēn)之幾(或百分之幾)。結(jié)果是一“分率”(或百分?jǐn)?shù))。公式:比較量÷標(biāo)準(zhǔn)量=分率示例:六(1)班有學(xué)生17人,其中女生10人,女生占全班人數(shù)的幾分之幾(或百分之幾)?第35頁/共50頁第三十六頁,共50頁。11.分?jǐn)?shù)(fēnshù)、百分?jǐn)?shù)(fēnshù)應(yīng)用題類型:求一個(gè)數(shù)比另一個(gè)數(shù)增加(zēngjiā)或減少百分之幾。意義(yìyì):正確判斷哪個(gè)量是標(biāo)準(zhǔn)量,再用相差的部分與它去比。公式:增加(或減少)量÷標(biāo)準(zhǔn)量=增加(或減少)的分率示例:六(1)班有男同學(xué)7人,女同學(xué)10人。男同學(xué)比女同學(xué)少百分之幾?第36頁/共50頁第三十七頁,共50頁。11.分?jǐn)?shù)(fēnshù)、百分?jǐn)?shù)(fēnshù)應(yīng)用題類型:求一個(gè)數(shù)的幾分(jǐfēn)之幾(或百分之幾)是多少。意義:已知單位“1”的量(標(biāo)準(zhǔn)量)和分率,求與分率所對應(yīng)的實(shí)際量(比較(bǐjiào)量)。結(jié)果為一個(gè)確定的數(shù)值。公式:

標(biāo)準(zhǔn)量×分率=比較量標(biāo)準(zhǔn)量×(1±原分率)=比較量示例1:一工人要生產(chǎn)300個(gè)零件,已完成了,他已經(jīng)做了多少個(gè)零件?示例2:去年計(jì)劃植樹800棵,結(jié)果超過原計(jì)劃的10%,實(shí)際植樹多少棵?第37頁/共50頁第三十八頁,共50頁。11.分?jǐn)?shù)(fēnshù)、百分?jǐn)?shù)(fēnshù)應(yīng)用題類型(lèixíng):已知一個(gè)數(shù)的幾分之幾(或百分之幾)是多少,求這個(gè)數(shù)。意義:已知比較量和分率,求單位(dānwèi)“1”的量(標(biāo)準(zhǔn)量)。結(jié)果為一個(gè)確定的數(shù)值。公式:算術(shù)解法:比較量×分率=標(biāo)準(zhǔn)量方程解法:ⅹ·分率=比較量(設(shè)標(biāo)準(zhǔn)量為ⅹ)示例:有兩根繩,甲繩長2米,比乙繩短,乙繩長多少米?第38頁/共50頁第三十九頁,共50頁。12.工程(gōngchéng)問題公式:工作(gōngzuò)總量÷工作(gōngzuò)時(shí)間=工作(gōngzuò)效率工作(gōngzuò)總量÷工作(gōngzuò)效率(效率和)=工作(gōngzuò)時(shí)間(合作時(shí)間)工作(gōngzuò)效率×工作(gōngzuò)時(shí)間=工作(gōngzuò)總量示例(shìlì):一項(xiàng)工程,甲獨(dú)做要10天,乙獨(dú)做要15天,丙獨(dú)做要20天。三人合做,多少天可以完成這項(xiàng)工程?現(xiàn)甲乙合做3天,剩下的由丙單獨(dú)做,還需幾天完成?現(xiàn)先由甲獨(dú)做3天后,再由三人合做,還需幾天完成?第39頁/共50頁第四十頁,共50頁。13.折扣(zhékòu)問題意義:百分?jǐn)?shù)應(yīng)用題的一種。買賣(mǎimai)貨物時(shí),照標(biāo)價(jià)減到原來的十分之幾,稱為幾折,這樣的問題就是折扣問題。公式(gōngshì):折扣價(jià)=原價(jià)×折扣示例:一件衣服原價(jià)120元,現(xiàn)按八折出售,現(xiàn)價(jià)是多少元?第40頁/共50頁第四十一頁,共50頁。14.利率(lìlǜ)問題意義:利率是金融用詞,又稱“利息率”,它表示一定時(shí)間(shíjiān)內(nèi)利息數(shù)與本金的比值。公式:利息(lìxī)=本金×利率×?xí)r間稅后利息(lìxī)=本金×利率×?xí)r間×(1-稅率)示例:王叔叔把3000元存入銀行,定期兩年,年利率是2.25%,到期時(shí)他可獲本金、利息一共多少錢?第41頁/共50頁第四十二頁,共50頁。15.濃度(nóngdù)問題示例:在濃度(nóngdù)為10%質(zhì)量為80克的鹽水中,加入多少克水,就能得到濃度(nóngdù)為8%的鹽水?分析:此題的變化過程中,由于鹽的質(zhì)量沒有變,可知現(xiàn)在鹽占鹽水的8%,可先求出鹽的質(zhì)量,再求出濃度為8%的鹽水的質(zhì)量,再用濃度為8%的鹽水的質(zhì)量減去濃度為10%的鹽水的質(zhì)量得到(dédào)加入水的質(zhì)量。解:根據(jù)題意得:原來鹽的質(zhì)量:80×10%=8(克)現(xiàn)在鹽水的質(zhì)量:8÷8%=100(克)加入水的質(zhì)量:100-80=20(克)答:加入20克水就能得到濃度為8%的鹽水。第42頁/共50頁第四十三頁,共50頁。觀察(guānchá)下面算式,想一想,說一說怎樣計(jì)算可以又快又準(zhǔn)確。499+37+50125×78×4125×(80+8)101×69723×4×10×25377+648-177我們學(xué)過哪些整數(shù)運(yùn)算的運(yùn)算律?用字母(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論