




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆山西省孝義市重點(diǎn)中學(xué)中考數(shù)學(xué)模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一次函數(shù)y=2x+1的圖像不經(jīng)過(
)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限2.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣13.某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是()A.袋中裝有大小和質(zhì)地都相同的3個(gè)紅球和2個(gè)黃球,從中隨機(jī)取一個(gè),取到紅球B.?dāng)S一枚質(zhì)地均勻的正六面體骰子,向上的面的點(diǎn)數(shù)是偶數(shù)C.先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點(diǎn)數(shù)之和是7或超過94.單項(xiàng)式2a3b的次數(shù)是()A.2 B.3 C.4 D.55.一、單選題點(diǎn)P(2,﹣1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)P′的坐標(biāo)是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)6.在⊙O中,已知半徑為5,弦AB的長為8,則圓心O到AB的距離為()A.3 B.4 C.5 D.67.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°8.如圖,點(diǎn)P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,OP為半徑的圓與x軸的正半軸交于點(diǎn)A,若△OPA的面積為S,則當(dāng)x增大時(shí),S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變9.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣1610.在一組數(shù)據(jù):1,2,4,5中加入一個(gè)新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小二、填空題(共7小題,每小題3分,滿分21分)11.已知點(diǎn)(﹣1,m)、(2,n)在二次函數(shù)y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).12.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A′處,當(dāng)A′E⊥AC時(shí),A′B=____.13.從﹣1,2,3,﹣6這四個(gè)數(shù)中任選兩數(shù),分別記作m,n,那么點(diǎn)(m,n)在函數(shù)圖象上的概率是.14.將拋物線y=(x+m)2向右平移2個(gè)單位后,對(duì)稱軸是y軸,那么m的值是_____.15.如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____________.16.已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y=圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.17.如圖,無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無人機(jī)距地面高度CD為米,點(diǎn)A、D、B在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))三、解答題(共7小題,滿分69分)18.(10分)在等邊△ABC外側(cè)作直線AM,點(diǎn)C關(guān)于AM的對(duì)稱點(diǎn)為D,連接BD交AM于點(diǎn)E,連接CE,CD,AD.(1)依題意補(bǔ)全圖1,并求∠BEC的度數(shù);(2)如圖2,當(dāng)∠MAC=30°時(shí),判斷線段BE與DE之間的數(shù)量關(guān)系,并加以證明;(3)若0°<∠MAC<120°,當(dāng)線段DE=2BE時(shí),直接寫出∠MAC的度數(shù).19.(5分)剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨(dú)特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為“金魚”,另外一張卡片的正面圖案為“蝴蝶”,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機(jī)抽取一張,記錄圖案后放回,重新洗勻后再從中隨機(jī)抽取一張.請(qǐng)用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是“金魚”的概率.(圖案為“金魚”的兩張卡片分別記為A1、A2,圖案為“蝴蝶”的卡片記為B)20.(8分)如圖,矩形的兩邊、的長分別為3、8,是的中點(diǎn),反比例函數(shù)的圖象經(jīng)過點(diǎn),與交于點(diǎn).若點(diǎn)坐標(biāo)為,求的值及圖象經(jīng)過、兩點(diǎn)的一次函數(shù)的表達(dá)式;若,求反比例函數(shù)的表達(dá)式.21.(10分)已如:⊙O與⊙O上的一點(diǎn)A(1)求作:⊙O的內(nèi)接正六邊形ABCDEF;(要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.22.(10分)如圖1,在直角梯形ABCD中,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿B→C→D→A勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個(gè)變化中,自變量、因變量分別是、;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)的路程x=4時(shí),△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.23.(12分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線y=x+3與x軸交于點(diǎn)D.(1)求拋物線的頂點(diǎn)C的坐標(biāo)及A,B兩點(diǎn)的坐標(biāo);(2)將拋物線y=x2﹣6x+9向上平移1個(gè)單位長度,再向左平移t(t>0)個(gè)單位長度得到新拋物線,若新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍;(3)點(diǎn)P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點(diǎn),當(dāng)△PAB的面積是△ABC面積的2倍時(shí),求m,n的值.24.(14分)某市飛翔航模小隊(duì),計(jì)劃購進(jìn)一批無人機(jī).已知3臺(tái)A型無人機(jī)和4臺(tái)B型無人機(jī)共需6400元,4臺(tái)A型無人機(jī)和3臺(tái)B型無人機(jī)共需6200元.(1)求一臺(tái)A型無人機(jī)和一臺(tái)B型無人機(jī)的售價(jià)各是多少元?(2)該航模小隊(duì)一次購進(jìn)兩種型號(hào)的無人機(jī)共50臺(tái),并且B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍.設(shè)購進(jìn)A型無人機(jī)x臺(tái),總費(fèi)用為y元.①求y與x的關(guān)系式;②購進(jìn)A型、B型無人機(jī)各多少臺(tái),才能使總費(fèi)用最少?
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)一次函數(shù)的系數(shù)判斷出函數(shù)圖象所經(jīng)過的象限,由k=2>0,b=1>0可知,一次函數(shù)y=2x+1的圖象過一、二、三象限.另外此題還可以通過直接畫函數(shù)圖象來解答.【詳解】∵k=2>0,b=1>0,∴根據(jù)一次函數(shù)圖象的性質(zhì)即可判斷該函數(shù)圖象經(jīng)過一、二、三象限,不經(jīng)過第四象限.故選D.【點(diǎn)睛】本題考查一次函數(shù)圖象與系數(shù)的關(guān)系,解決此類題目的關(guān)鍵是確定k、b的正負(fù).2、C【解析】
首先找出分式的最簡公分母,進(jìn)而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗(yàn):當(dāng)x=-時(shí),(x+1)2≠0,故x=-是原方程的根.故選C.【點(diǎn)睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關(guān)鍵.3、D【解析】
根據(jù)統(tǒng)計(jì)圖可知,試驗(yàn)結(jié)果在0.33附近波動(dòng),即其概率P≈0.33,計(jì)算四個(gè)選項(xiàng)的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計(jì)圖可知,試驗(yàn)結(jié)果在0.33附近波動(dòng),即其概率P≈0.33,A、袋中裝有大小和質(zhì)地都相同的3個(gè)紅球和2個(gè)黃球,從中隨機(jī)取一個(gè),取到紅球的概率為,不符合題意;B、擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點(diǎn)數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點(diǎn)數(shù)之和是7或超過9的概率為,符合題意,故選D.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、C【解析】分析:根據(jù)單項(xiàng)式的性質(zhì)即可求出答案.詳解:該單項(xiàng)式的次數(shù)為:3+1=4故選C.點(diǎn)睛:本題考查單項(xiàng)式的次數(shù)定義,解題的關(guān)鍵是熟練運(yùn)用單項(xiàng)式的次數(shù)定義,本題屬于基礎(chǔ)題型.5、A【解析】
根據(jù)“關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”解答.【詳解】解:點(diǎn)P(2,-1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-2,1).故選A.【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).6、A【解析】解:作OC⊥AB于C,連結(jié)OA,如圖.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圓心O到AB的距離為2.故選A.7、B【解析】分析:根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點(diǎn)睛:此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答.8、D【解析】
作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.9、B【解析】
先把原式化為2x÷22y×23的形式,再根據(jù)同底數(shù)冪的乘法及除法法則進(jìn)行計(jì)算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法及除法運(yùn)算,根據(jù)題意把原式化為2x÷22y×23的形式是解答此題的關(guān)鍵.10、D【解析】
根據(jù)中位數(shù)和方差的定義分別計(jì)算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,
∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;
∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點(diǎn)睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.二、填空題(共7小題,每小題3分,滿分21分)11、>;【解析】
∵=a(x-1)2-a-1,∴拋物線對(duì)稱軸為:x=1,由拋物線的對(duì)稱性,點(diǎn)(-1,m)、(2,n)在二次函數(shù)的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>12、或7【解析】
分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點(diǎn)的定義求出AD和BD的長,證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長,并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長.【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點(diǎn),BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長線于F,延長A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長為或.故答案為:或.【點(diǎn)睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.13、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(diǎn)(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(diǎn)(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;列表法與樹狀圖法.14、1【解析】
根據(jù)平移規(guī)律“左加右減,上加下減”填空.【詳解】解:將拋物線y=(x+m)1向右平移1個(gè)單位后,得到拋物線解析式為y=(x+m-1)1.其對(duì)稱軸為:x=1-m=0,解得m=1.故答案是:1.【點(diǎn)睛】主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.15、﹣24【解析】分析:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點(diǎn)C的坐標(biāo)為,這樣由點(diǎn)C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點(diǎn)C的坐標(biāo)為,∵點(diǎn)C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點(diǎn)睛:本題的解題要點(diǎn)有兩點(diǎn):(1)作出如圖所示的輔助線,設(shè)CF=4x,結(jié)合已知條件把OF和OA用含x的式子表達(dá)出來;(2)由四邊形AOCB是菱形,點(diǎn)D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.16、(1)-2;(2)【解析】
(1)設(shè)點(diǎn)P的坐標(biāo)為(m,n),則點(diǎn)Q的坐標(biāo)為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.17、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計(jì)算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計(jì)算AD+BD即可.詳解:如圖,∵無人機(jī)在空中C處測得地面A、B兩點(diǎn)的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點(diǎn)間的距離為100(1+)米.故答案為100(1+).點(diǎn)睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題:解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.三、解答題(共7小題,滿分69分)18、(1)補(bǔ)全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】
(1)根據(jù)軸對(duì)稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內(nèi)角和得出x+y即可得出結(jié)論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進(jìn)而得出∠CBD=30°,進(jìn)而得出∠BCD=90°,即可得出結(jié)論;(3)先作出EF=2BE,進(jìn)而判斷出EF=CE,再判斷出∠CBE=90°,進(jìn)而得出∠BCE=30°,得出∠AEC=60°,即可得出結(jié)論.【詳解】(1)補(bǔ)全圖形如圖1所示,根據(jù)軸對(duì)稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對(duì)稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點(diǎn)C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時(shí),沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對(duì)稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點(diǎn)睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質(zhì),軸對(duì)稱的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,作出圖形是解本題的關(guān)鍵.19、【解析】【分析】列表得出所有等可能結(jié)果,然后根據(jù)概率公式列式計(jì)算即可得解【詳解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9種等可能結(jié)果,其中抽出的兩張卡片上的圖案都是“金魚”的4種結(jié)果,所以抽出的兩張卡片上的圖案都是“金魚”的概率為.【點(diǎn)睛】本題考查了列表法和樹狀圖法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1),;(2).【解析】分析:(1)由已知求出A、E的坐標(biāo),即可得出m的值和一次函數(shù)函數(shù)的解析式;(2)由,得到,由,得到.設(shè)點(diǎn)坐標(biāo)為,則點(diǎn)坐標(biāo)為,代入反比例函數(shù)解析式即可得到結(jié)論.詳解:(1)∵為的中點(diǎn),∴.∵反比例函數(shù)圖象過點(diǎn),∴.設(shè)圖象經(jīng)過、兩點(diǎn)的一次函數(shù)表達(dá)式為:,∴,解得,∴.(2)∵,∴.∵,∴,∴.設(shè)點(diǎn)坐標(biāo)為,則點(diǎn)坐標(biāo)為.∵兩點(diǎn)在圖象上,∴,解得:,∴,∴,∴.點(diǎn)睛:本題考查了矩形的性質(zhì)以及反比例函數(shù)一次函數(shù)的解析式.解題的關(guān)鍵是求出點(diǎn)A、E、F的坐標(biāo).21、(1)答案見解析;(2)證明見解析.【解析】
(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質(zhì)得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【點(diǎn)睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質(zhì).22、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面積=1.【解析】
(1)依據(jù)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,即可得到自變量和因變量;(2)依據(jù)函數(shù)圖象,即可得到點(diǎn)P運(yùn)動(dòng)的路程x=4時(shí),△ABP的面積;(3)根據(jù)圖象得出BC的長,以及此時(shí)三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數(shù)圖象得出DC的長,利用梯形面積公式求出梯形ABCD面積即可.【詳解】(1)∵點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,∴自變量為x,因變量為y.故答案為x,y;(2)由圖可得:當(dāng)點(diǎn)P運(yùn)動(dòng)的路程x=4時(shí),△ABP的面積為y=2.故答案為2;(3)根據(jù)圖象得:BC=4,此時(shí)△ABP為2,∴AB?BC=2,即×AB×4=2,解得:AB=8;由圖象得:DC=9﹣4=5,則S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,弄清函數(shù)圖象上的信息是解答本題的關(guān)鍵.23、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點(diǎn)式即可求出點(diǎn)C的坐標(biāo),聯(lián)立拋物線與直線的解析式即可求出A、B的坐標(biāo).(Ⅱ)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),然后求出直線AC的解析式后,將點(diǎn)E的坐標(biāo)分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點(diǎn)F,連接CF,過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G,由直線y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點(diǎn)G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點(diǎn)坐標(biāo)為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),設(shè)直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當(dāng)點(diǎn)E在直線AC上時(shí),﹣2(2﹣t)+1=1,解得:t=.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 清華附中分班考數(shù)學(xué)試卷
- 理科高二必修5數(shù)學(xué)試卷
- 遼師附中高考數(shù)學(xué)試卷
- 2025年小學(xué)英語教育試題及答案
- 知道智慧樹全球傳播滿分測試答案
- 市政管道施工與管理方案
- 2025年小學(xué)數(shù)學(xué)面試試題及答案
- 化妝保養(yǎng)知識(shí)培訓(xùn)
- 2025年小學(xué)思政課試題及答案
- 2025基礎(chǔ)考試題庫及答案
- 外研版高一到高三單詞表
- 《鼻內(nèi)鏡上頜竇開放》課件
- 2025版商業(yè)綜合體物業(yè)服務(wù)合同招標(biāo)文件3篇
- 建設(shè)工程降低成本、提高經(jīng)濟(jì)效益措施
- 課程思政融合深度學(xué)習(xí)的“實(shí)變函數(shù)與泛函分析”課程教學(xué)體系構(gòu)建
- 2025年日歷表( 每2個(gè)月一張打印版)
- 2024-2030年中國科技孵化器產(chǎn)業(yè)運(yùn)行動(dòng)態(tài)及投資發(fā)展前景調(diào)研報(bào)告
- 四年級(jí)下冊(cè)數(shù)學(xué)200道豎式計(jì)算
- 江蘇省南京市雨花臺(tái)區(qū)實(shí)驗(yàn)小學(xué)2024-2025學(xué)年五年級(jí)上學(xué)期期中數(shù)學(xué)試題(文字版)
- RPA財(cái)務(wù)機(jī)器人開發(fā)與應(yīng)用 課件 6.2 RPA銀企對(duì)賬機(jī)器人
- 糧油食材配送投標(biāo)方案(大米食用油食材配送服務(wù)投標(biāo)方案)(技術(shù)方案)
評(píng)論
0/150
提交評(píng)論