強(qiáng)化訓(xùn)練湖南省汨羅市中考數(shù)學(xué)真題分類(勾股定理)匯編同步測(cè)試試題(含詳解)_第1頁
強(qiáng)化訓(xùn)練湖南省汨羅市中考數(shù)學(xué)真題分類(勾股定理)匯編同步測(cè)試試題(含詳解)_第2頁
強(qiáng)化訓(xùn)練湖南省汨羅市中考數(shù)學(xué)真題分類(勾股定理)匯編同步測(cè)試試題(含詳解)_第3頁
強(qiáng)化訓(xùn)練湖南省汨羅市中考數(shù)學(xué)真題分類(勾股定理)匯編同步測(cè)試試題(含詳解)_第4頁
強(qiáng)化訓(xùn)練湖南省汨羅市中考數(shù)學(xué)真題分類(勾股定理)匯編同步測(cè)試試題(含詳解)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省汨羅市中考數(shù)學(xué)真題分類(勾股定理)匯編同步測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,中,,一同學(xué)利用直尺和圓規(guī)完成如下操作:①以點(diǎn)C為圓心,以CB為半徑畫弧,交AB于點(diǎn)G;分別以點(diǎn)G、B為圓心,以大于的長(zhǎng)為半徑畫弧,兩弧交點(diǎn)K,作射線CK;②以點(diǎn)B為圓心,以適當(dāng)?shù)拈L(zhǎng)為半徑畫弧,交BC于點(diǎn)M,交AB的延長(zhǎng)線于N,分別以M、N為圓心,以大于的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作直線BP交AC的延長(zhǎng)線于點(diǎn)D,交射線CK于點(diǎn)E.請(qǐng)你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點(diǎn)D作交AB的延長(zhǎng)線于點(diǎn)F,若,,則CE的長(zhǎng)為(

)A.13 B. C. D.2、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.63、在△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,下列結(jié)論中不正確的是(

)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形4、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm5、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點(diǎn),直線l經(jīng)過點(diǎn)D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.36、如圖,在水塔O的東北方向24m處有一抽水站A,在水塔的東南方向18m處有一建筑工地B,在AB間建一條直水管,則水管AB的長(zhǎng)為(

)A.40m B.45m C.30m D.35m7、《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,記載著這樣一個(gè)問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長(zhǎng)各幾何?”大意是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?設(shè)蘆葦?shù)拈L(zhǎng)度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)2第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.2、如圖,在中,,,,現(xiàn)將沿進(jìn)行翻折,使點(diǎn)剛好落在上,則__________.3、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.4、小聰準(zhǔn)備測(cè)量河水的深度,他把一根竹竿插到離岸邊遠(yuǎn)的水底,竹竿高出水面,把竹竿的頂端拉向岸邊,竹竿頂和岸邊的水面剛好相齊,則河水的深度為__________.5、我國(guó)古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長(zhǎng)幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長(zhǎng)為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問題中葛藤的最短長(zhǎng)度是_______尺.

6、如圖,在一次綜合實(shí)踐活動(dòng)中,小明將一張邊長(zhǎng)為10cm的正方形紙片ABCD,沿著BC邊上一點(diǎn)E與點(diǎn)A的連線折疊,點(diǎn)B'是點(diǎn)B的對(duì)應(yīng)點(diǎn),延長(zhǎng)EB'交DC于點(diǎn)G,B'G=cm,則△ECG的面積為_____cm2.7、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上.若AB=10,BC=8,則△ACE的面積為________.8、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長(zhǎng)為7,則正方形A、B、C、D的面積之和為__________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面,則水池里水的深度是多少尺?請(qǐng)你用所學(xué)知識(shí)解答這個(gè)問題.2、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.3、拖拉機(jī)行駛過程中會(huì)對(duì)周圍產(chǎn)生較大的噪聲影響.如圖,有一臺(tái)拖拉機(jī)沿公路AB由點(diǎn)A向點(diǎn)B行駛,已知點(diǎn)C為一所學(xué)校,且點(diǎn)C與直線AB上兩點(diǎn)A,B的距離分別為150m和200m,又AB=250m,拖拉機(jī)周圍130m以內(nèi)為受噪聲影響區(qū)域.(1)學(xué)校C會(huì)受噪聲影響嗎?為什么?(2)若拖拉機(jī)的行駛速度為每分鐘50米,拖拉機(jī)噪聲影響該學(xué)校持續(xù)的時(shí)間有多少分鐘?4、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長(zhǎng)度.5、如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1.(1)請(qǐng)?jiān)谒o網(wǎng)格中畫一個(gè)邊長(zhǎng)分別為,,的三角形;(2)此三角形的面積是.6、《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭(zhēng)蹴,終朝笑語歡嬉.良工高士素好奇,算出索長(zhǎng)有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長(zhǎng).”7、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.-參考答案-一、單選題1、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建方程解決問題,屬于中考??碱}型.2、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.3、B【解析】【分析】根據(jù)勾股定理的逆定理、三角形內(nèi)角和定理、直角三角形定義即可.【詳解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此選項(xiàng)正確;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此選項(xiàng)不正確;C、如果∠A:∠B:∠C=1:3:2,設(shè)∠A=x,則∠B=3x,∠C=2x,則x+3x+2x=180°,解得:x=30°,則3x=90°,∴△ABC是直角三角形,此選項(xiàng)正確;D、如果a2:b2:c2=9:16:25,則a2+b2=c2,∴△ABC是直角三角形,此選項(xiàng)正確;故選:B.【考點(diǎn)】本題考查了三角形內(nèi)角和,勾股定理的逆定理,如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.4、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點(diǎn)】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.5、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進(jìn)行計(jì)算即可.【詳解】解:如圖,過點(diǎn)C作CK⊥l于點(diǎn)K,過點(diǎn)A作AH⊥BC于點(diǎn)H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點(diǎn)D為BC中點(diǎn),∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長(zhǎng)AE,過點(diǎn)C作CN⊥AE于點(diǎn)N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當(dāng)直線l⊥AC時(shí),最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.6、C【解析】【分析】由題意可知東北方向和東南方向間剛好是一直角,利用勾股定理解圖中直角三角形即可.【詳解】解:∵OA是東北方向,OB是東南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故選:C.【考點(diǎn)】本題考查的知識(shí)點(diǎn)是解直角三角形的應(yīng)用,正確運(yùn)用勾股定理,善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.7、C【解析】【分析】首先設(shè)蘆葦長(zhǎng)x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長(zhǎng)x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.二、填空題1、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)的連線段被折痕垂直平分.2、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.53、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個(gè)直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點(diǎn)】此題考查勾股定理,解題關(guān)鍵在于列出方程.4、2【解析】【分析】根據(jù)河水深度、竹竿到岸邊的距離、竹竿長(zhǎng)構(gòu)成直角三角形,利用勾股定理進(jìn)行計(jì)算即可.【詳解】根據(jù)題意畫出示意圖,如圖,則AC=0.5m,,,所以BC即為河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案為:2.【考點(diǎn)】本題考查了勾股定理,根據(jù)題意畫示意圖找出與所求邊長(zhǎng)相關(guān)線段所構(gòu)成直角三角形是解題關(guān)鍵.5、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長(zhǎng)為(尺).故答案為:25.6、【解析】【分析】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,則BE=B′E,連接AG,可證△AB′G≌△ADG,則DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,根據(jù)勾股定理列出方程,可求出BE的值,從而求出CE,最后由三角形面積公式求出△ECG的面積.【詳解】根據(jù)翻折的性質(zhì)可知△ABE和△AB′E全等,BE=B′E,連接AG,如圖,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,設(shè)BE=xcm,則CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根據(jù)勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面積=(cm2)故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,結(jié)合全等的知識(shí)找出題中的線段之間的關(guān)系是本題的解題關(guān)鍵.7、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點(diǎn)】本題考查直角三角形中的折疊問題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.8、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對(duì)所給圖形進(jìn)行標(biāo)注:因?yàn)樗械娜切味际侵苯侨切?,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因?yàn)椋?,所以正方形A,B,C,D的面積和.故答案為:49.【考點(diǎn)】本題主要考查了勾股定理、正方形的性質(zhì),面積的計(jì)算,掌握勾股定理是解本題的關(guān)鍵.三、解答題1、水池里水的深度是15尺【解析】【分析】根據(jù)勾股定理列出方程,解方程即可.【詳解】解:設(shè)水池里水的深度是x尺,由題意得,,解得:x=l5,答:水池里水的深度是15尺.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,掌握勾股定理、根據(jù)勾股定理正確列出方程是解題的關(guān)鍵.2、△ABC為直角三角形或等腰三角形【解析】【分析】首先把等式的左右兩邊分解因式,再考慮等式成立的條件,從而判斷△ABC的形狀.【詳解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC為直角三角形或等腰三角形.3、(1)會(huì)受噪聲影響,理由見解析;(2)有2分鐘;【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而利用三角形面積得出CD的長(zhǎng),進(jìn)而得出學(xué)校C是否會(huì)受噪聲影響;(2)利用勾股定理得出ED以及EF的長(zhǎng),進(jìn)而得出拖拉機(jī)噪聲影響該學(xué)校持續(xù)的時(shí)間.【詳解】解:(1)學(xué)校C會(huì)受噪聲影響.理由:如圖,過點(diǎn)C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉機(jī)周圍130m以內(nèi)為受噪聲影響區(qū)域,∴學(xué)校C會(huì)受噪聲影響.(2)當(dāng)EC=130m,F(xiàn)C=130m時(shí),正好影響C學(xué)校,∵ED==50(m),∴EF=50×2=100(m),∵拖拉機(jī)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論