2.3等腰三角形的性質(zhì)定理(1)課件浙教版八年級數(shù)學(xué)上冊_第1頁
2.3等腰三角形的性質(zhì)定理(1)課件浙教版八年級數(shù)學(xué)上冊_第2頁
2.3等腰三角形的性質(zhì)定理(1)課件浙教版八年級數(shù)學(xué)上冊_第3頁
2.3等腰三角形的性質(zhì)定理(1)課件浙教版八年級數(shù)學(xué)上冊_第4頁
2.3等腰三角形的性質(zhì)定理(1)課件浙教版八年級數(shù)學(xué)上冊_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2.3等腰三角形的性質(zhì)(1)浙教版八年級上冊有兩條邊相等的三角形叫做等腰三角形.

(1)相等的兩邊都叫做腰,

另一邊叫做底邊,(2)兩腰的夾角叫做頂角,(3)腰和底邊的夾角叫做底角.腰腰底邊頂角底角底角ABC溫故知新:猜想:頂角的取值范圍底角的取值范圍頂角底角底角腰腰底邊頂角底角底角0°<頂角<180°0°<底角<90°猜想:等腰三角形兩個(gè)底角的數(shù)量關(guān)系頂角底角底角腰腰底邊猜想:等腰三角形的兩個(gè)底角相等.1.已知:△ABC中,AB=AC求證:∠B=∠CABCD法一:作頂角的平分線AD.法二:作底邊上的中線AD法三:作底邊上的高線AD.如何證明兩個(gè)角相等?ABCD證明:作頂角的平分線AD,則∠1=∠2∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的對應(yīng)角相等).方法一:作頂角的平分線在△BAD和△CAD中12

.ABCD作底邊上

的中線AD,則BD=CD∴△BAD≌△CAD(SSS).∴∠B=∠C(全等三角形的對應(yīng)角相等).在△BAD和△CAD中方法二:作底邊上的中線證明:

。ACBACBACB┐方法三:等腰三角形是軸對稱圖形;對稱軸是等腰三角形的頂角平分線所在的直線。自編三道:已知等腰三角形某一個(gè)角的度數(shù),求另外兩個(gè)角的度數(shù)學(xué)以致用:

頂角+2×底角=180°頂角底角底角腰腰底邊2.底角=(180°-頂角)÷21.頂角=180°-2×底角解:

∵AB=AC∴∠B=∠C(等腰三角形的兩個(gè)底角相等)∵∠A+∠B+∠C=180°,

∠A=50°

∴∠B=∠C=(180°-∠A)=(180°-50°)=65°

2.已知:等腰三角形的一個(gè)底角為50°,求另兩個(gè)角的度數(shù).1.50°為頂角:另兩個(gè)角的度數(shù)為65°,65°

另兩個(gè)角的度數(shù)為50°,80°1.如圖,在△ABC中AB=AC,∠A=50°,求∠B,∠C的度數(shù)。50°ABC2.50°為底角:另兩個(gè)角的度數(shù)為50°,80°3.已知:等腰三角形的一個(gè)角為50°,求另兩個(gè)角的度數(shù).指代不明,分類討論2.求等邊三角形ABC三個(gè)內(nèi)角的度數(shù).ABC解如圖,在△ABC中,∵AB=AC(已知),∴∠B=∠C(等腰三角形的兩個(gè)底角相等).同理,∠A=∠B.∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=180°÷3=60°.3.如圖,AD,BE是等邊三角形ABC的兩條角平分線,AD、BE相交于點(diǎn)O.求∠AOB的度數(shù).解:∵△ABC是等邊三角形∴∠BAC=∠ABC=60°∵AD,BE是等邊三角形ABC的角平分線∴∠BAO=∠DAC=30°

∠ABO=∠EBC=30°∴∠AOB=180°-∠BAO-

∠ABO=120°

4.猜想:與等腰三角形兩底角相關(guān)的性質(zhì).頂角底角底角腰腰底邊等腰三角形兩底角的平分線相等.

求證:等腰三角形兩底角的平分線相等.已知:如圖,在△ABC中,AB=AC,BD和CE是△ABC的兩條角平分線.求證:BD=CE證明:∵AB=AC(已知)

∴∠CBD=∠ABC,∠BCE=∠ACB∴△BCE≌△CBD(ASA)∴∠ABC=∠ACB(等腰三角形的兩個(gè)底角相等)∵BD,CE分別是∠ABC和∠ACB的平分線∴∠CBD=∠BCE在△BCE和△CBD中

∴BD=CE(全等三角形的對應(yīng)邊相等)法1:已知:如圖,在△ABC中,AB=AC,BD和CE是△ABC的兩

條角平分線.求證:BD=CE證明:∵AB=AC(已知)

∴∠ABD=∠ABC,∠ACE=∠ACB(角平分線的定義)∴BD=CE(全等三角形的對應(yīng)邊相等)∴∠ABC=∠ACB(等腰三角形的兩個(gè)底角相等)∵BD,CE分別是∠ABC和∠ACB的平分線∴∠ABD=∠ACE△ABD和△ACE中

∴△ABD≌△ACE(ASA)法2:1.等腰三角形的性質(zhì)定理1

定理:等腰三角形的兩個(gè)底角相等,

也就是說,在同一個(gè)三角形中,等邊對等角.2.等邊三角形的性質(zhì)

定理:等邊三角形的各個(gè)內(nèi)角都等于600.

等邊三角形的特殊性質(zhì)主要指:

三個(gè)內(nèi)角都相等,三條邊都相等,是軸對稱圖形且有三條對稱軸.歸納總結(jié):1填空:在等腰三角形中,(1)已知頂角為70°,其余兩個(gè)角分別為_____。(2)已知底角為70°,其余兩個(gè)角分別為_____。(3)已知一個(gè)角為70°,其余兩個(gè)角分別為______(4)已知一個(gè)角為100°,其余兩個(gè)角分別為_____。55°,55°70°,40°55°,55°或70°,40°40°,40°當(dāng)堂檢測:0°<頂角<180°0°<底角<90°2.如圖,△ABC中,已知,AB=AC,點(diǎn)D在CA的延長線上,∠DAB=50°,則∠B的度數(shù)為()

A.25° B.30° C.40° D.45°A等腰三角形頂角的外角是底角的2倍3.證明:在一個(gè)三角形中,較大的邊所對的角也較大.也可以說成:在同一個(gè)三角形中,大邊對大角.已知:如圖,在△ABC中,AB>AC,求證:∠ACB>∠ABCABCD證明:∵AB>AC,在AB上截取AD,使AD=AC,連接CD

∴∠ADC=∠ACD(在同一個(gè)三角形中,等邊對等角)∵∠ADC>∠ABC(三角形的外角大于與它不相鄰的內(nèi)角)∠ACB>∠ACD(幾何直觀)∴∠ACB>∠ADC>∠ABC截取----構(gòu)造等腰三角形連續(xù)遞推,豁然開朗ACBD123解:∵BD=AD,∴∠1=∠A∵∠3=∠1+∠A,∴∠3=2∠A∵BD=BC,∴∠3=∠C,∴∠C=2∠A∵AB=AC,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論