




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、若關(guān)于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過定點(diǎn)(1,1),且當(dāng)x<﹣1時(shí)y隨x的增大而減小,則a的取值范圍是()A. B. C. D.2、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點(diǎn)O,E為CD延長(zhǎng)線上的一點(diǎn),且CD=DE,連接BE分別交AC,AD于點(diǎn)F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;
②四邊形ABDE是菱形;③;其中正確的是(
)A.①② B.①③ C.②③ D.①②③3、為了美觀,在加工太陽鏡時(shí)將下半部分輪廓制作成拋物線的形狀(如圖所示),對(duì)應(yīng)的兩條拋物線關(guān)于軸對(duì)稱,軸,,最低點(diǎn)在軸上,高,,則右輪廓所在拋物線的解析式為(
)A. B. C. D.4、下列說法中不正確的是()A.任意兩個(gè)等邊三角形相似 B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似C.有一個(gè)角是30°的兩個(gè)等腰三角形相似 D.任意兩個(gè)正方形相似5、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點(diǎn)C作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°6、如圖,Rt△ABC中,,,,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿AB向B點(diǎn)運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.4二、多選題(7小題,每小題2分,共計(jì)14分)1、在Rt△ABC中,∠C=90°,則下列式子不成立的是()A.sinA=sinB B.cosA=cosB C.tanA=tanB D.cotA=tanB2、已知Rt△ABC中,∠C=90°,AC=2,BC=3,則下列各式中,不正確的是()A.sinB= B.cosB= C.tanB= D.以上都不對(duì)3、如圖是二次函數(shù)圖象的一部分,過點(diǎn),,對(duì)稱軸為直線.則錯(cuò)誤的有(
)A. B. C. D.4、利用反例可以判斷一個(gè)命題是錯(cuò)誤的,下列命題錯(cuò)誤的是(
)A.若,則 B.對(duì)角線相等的四邊形是矩形C.函數(shù)的圖象是中心對(duì)稱圖形 D.六邊形的外角和大于五邊形的外角和5、如圖,在邊長(zhǎng)為4的正方形ABCD中,E、F是AD邊上的兩個(gè)動(dòng)點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)G,連接AG交BE于點(diǎn)H,連接DH,下列結(jié)論中正確的是(
)
A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAGE.線段DH的最小值是2﹣26、下列說法中,不正確的是(
)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對(duì)的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個(gè)圓內(nèi)平分一條弧和平分它所對(duì)的弦的直線必經(jīng)過這個(gè)圓的圓心7、已知拋物線(,,是常數(shù),)經(jīng)過點(diǎn),,當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.下列結(jié)論正確的是(
)A. B.C. D.關(guān)于的方程有兩個(gè)不等的實(shí)數(shù)根第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、定義:由a,b構(gòu)造的二次函數(shù)叫做一次函數(shù)y=ax+b的“滋生函數(shù)”,一次函數(shù)y=ax+b叫做二次函數(shù)的“本源函數(shù)”(a,b為常數(shù),且).若一次函數(shù)y=ax+b的“滋生函數(shù)”是,那么二次函數(shù)的“本源函數(shù)”是______.2、如圖,在RT△ABC中,,點(diǎn)D是的中點(diǎn),過點(diǎn)D作,垂足為點(diǎn)E,連接,若,,則________.3、如圖,已知P是函數(shù)y1圖象上的動(dòng)點(diǎn),當(dāng)點(diǎn)P在x軸上方時(shí),作PH⊥x軸于點(diǎn)H,連接PO.小華用幾何畫板軟件對(duì)PO,PH的數(shù)量關(guān)系進(jìn)行了探討,發(fā)現(xiàn)PO﹣PH是個(gè)定值,則這個(gè)定值為_____.4、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長(zhǎng)=_____.5、已知二次函數(shù)與x軸有兩個(gè)交點(diǎn),把當(dāng)k取最小整數(shù)時(shí)的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象,若新圖象與直線有三個(gè)不同的公共點(diǎn),則m的值為______.6、已知關(guān)于的一元二次方程,有下列結(jié)論:①當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)根;②當(dāng)時(shí),方程不可能有兩個(gè)異號(hào)的實(shí)根;③當(dāng)時(shí),方程的兩個(gè)實(shí)根不可能都小于1;④當(dāng)時(shí),方程的兩個(gè)實(shí)根一個(gè)大于3,另一個(gè)小于3.以上4個(gè)結(jié)論中,正確的個(gè)數(shù)為_________.7、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長(zhǎng)是_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在正方形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F.(1)如圖①,當(dāng)時(shí),求的值;(2)如圖②,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),過點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG=BG.
2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動(dòng)點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以2cm/s的速度運(yùn)動(dòng).P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).(1)當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時(shí),PQ與⊙O相切?3、某賓館共有80間客房.賓館負(fù)責(zé)人根據(jù)經(jīng)驗(yàn)作出預(yù)測(cè):今年5月份,每天的房間空閑數(shù)y(間)與定價(jià)x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運(yùn)營(yíng)成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費(fèi)用,賓館想要獲得最大利潤(rùn),同時(shí)也想讓客人得到實(shí)惠.(1)求入住房間z(間)與定價(jià)x(元/間)之間關(guān)系式;(2)應(yīng)將房間定價(jià)確定為多少元時(shí),獲得利潤(rùn)最大?求出最大利潤(rùn)?4、如圖,在的正三角形的網(wǎng)格中,的三個(gè)頂點(diǎn)都在格點(diǎn)上.請(qǐng)按要求畫圖和計(jì)算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.5、在矩形中,于點(diǎn),點(diǎn)是邊上一點(diǎn).(1)若平分,交于點(diǎn),PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.6、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時(shí),小麗、小明離B地的距離分別為、,與x之間的數(shù)表達(dá)式,與x之間的函數(shù)表達(dá)式是.(1)小麗出發(fā)時(shí),小明離A地的距離為.(2)小麗發(fā)至小明到達(dá)B地這段時(shí)間內(nèi),兩人何時(shí)相距最近?最近距離是多少?-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意開口向上,且對(duì)稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過原點(diǎn),∵拋物線定點(diǎn)(1,1),且當(dāng)x<-1時(shí),y隨x的增大而減小,∴拋物線開口向上,且對(duì)稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點(diǎn)】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)題意得關(guān)于a的不等式組是解題的關(guān)鍵.2、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關(guān)的面積問題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點(diǎn)】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識(shí).判斷①的關(guān)鍵是三角形中位線定理的運(yùn)用,②的關(guān)鍵是利用等邊三角形證明BD=AB;③的關(guān)鍵是通過相似得出面積之間的關(guān)系.3、B【解析】【分析】利用B、D關(guān)于y軸對(duì)稱,CH=1cm,BD=2cm可得到D點(diǎn)坐標(biāo)為(1,1),由AB=4cm,最低點(diǎn)C在x軸上,則AB關(guān)于直線CH對(duì)稱,可得到左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-3,0),于是得到右邊拋物線的頂點(diǎn)C的坐標(biāo)為(3,0),然后設(shè)頂點(diǎn)式利用待定系數(shù)法求拋物線的解析式.【詳解】∵高CH=1cm,BD=2cm,且B、D關(guān)于y軸對(duì)稱,∴D點(diǎn)坐標(biāo)為(1,1),∵AB∥x軸,AB=4cm,最低點(diǎn)C在x軸上,∴AB關(guān)于直線CH對(duì)稱,∴左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-3,0),∴右邊拋物線的頂點(diǎn)F的坐標(biāo)為(3,0),設(shè)右邊拋物線的解析式為y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=,∴右邊拋物線的解析式為y=(x-3)2,故選:B.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用:利用實(shí)際問題中的數(shù)量關(guān)系與直角坐標(biāo)系中線段對(duì)應(yīng)起來,再確定某些點(diǎn)的坐標(biāo),然后利用待定系數(shù)法確定拋物線的解析式,再利用拋物線的性質(zhì)解決問題.4、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個(gè)等邊三角形相似,說法正確;B.有一個(gè)銳角是40°的兩個(gè)直角三角形相似,說法正確;C.有一個(gè)角是30°的兩個(gè)等腰三角形相似,30°有可能是頂角或底角,故說法錯(cuò)誤;D.任意兩個(gè)正方形相似,說法正確.故選:C.【考點(diǎn)】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關(guān)鍵.5、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點(diǎn)】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握?qǐng)A的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).6、A【解析】【分析】求出AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),證出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出結(jié)果.【詳解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分兩種情況:①當(dāng)∠EDB=∠ACB=90°時(shí),DE∥AC,所以△EBD∽△ABC,E為AB的中點(diǎn),AE=BE=AB=2cm,∴t=2s;②當(dāng)∠DEB=∠ACB=90°時(shí),∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D為BC的中點(diǎn),∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;綜上所述,當(dāng)以B、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),t的值為2或3.5,故選A.【考點(diǎn)】本題考查了相似三角形的判定、平行線的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識(shí);熟記相似三角形的判定方法是解決問題的關(guān)鍵,注意分類討論.二、多選題1、ABC【解析】【分析】本題利用銳角三角函數(shù)的定義求解,即銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.【詳解】解:、,,,故錯(cuò)誤,符合題意;、,,,故錯(cuò)誤,符合題意;、,,,故錯(cuò)誤,符合題意;、,,則,故正確,不符合題意;故選:ABC.【考點(diǎn)】本題考查了銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練掌握銳角三角函數(shù)的定義,即銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.2、ABD【解析】【分析】根據(jù)勾股定理求出AB的值,再根據(jù)銳角三角函數(shù)定義求出的三個(gè)函數(shù)值,進(jìn)行判斷即可得.【詳解】解:如圖所示,在中,AC=2,BC=3,根據(jù)勾股定理,,A、,選項(xiàng)說法錯(cuò)誤,符合題意;B、,選項(xiàng)說法錯(cuò)誤,符合題意;C、,選項(xiàng)說法正確,不符合題意;D、選項(xiàng)C說法正確,選項(xiàng)說法錯(cuò)誤,符合題意;故選ABD.【考點(diǎn)】本題考查了銳角三角形函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理和銳角三角函數(shù)的定義.3、BD【解析】【分析】由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸x=?1可得2a+b的符號(hào);再由根的判別式可得,根據(jù)二次函數(shù)的對(duì)稱性進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點(diǎn)在y軸的正半軸上,知c>0,∵對(duì)稱軸為直線,得2a=b,∴a、b同號(hào),即b<0,∴abc>0;故本選項(xiàng)正確,不符合題意;B、∵對(duì)稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項(xiàng)錯(cuò)誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個(gè)不同的交點(diǎn),所以根的判別式,即;故本選項(xiàng)正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對(duì)稱性,知當(dāng)x=1時(shí),y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項(xiàng)錯(cuò)誤,符合題意.故選:BD.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運(yùn)用對(duì)稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.4、ABD【解析】【分析】根據(jù)有理數(shù)的乘法、矩形的判定定理、反比例函數(shù)的性質(zhì)、多邊形的外角性質(zhì)逐一判斷即可.【詳解】解:A、當(dāng)b=0,a≠0時(shí),則,該選項(xiàng)符合題意;B、如圖:四邊形ABCD的對(duì)角線AC=BD,但四邊形ABCD不是矩形,該選項(xiàng)符合題意;C、函數(shù)的圖象是中心對(duì)稱圖形,該選項(xiàng)不符合題意;D、多邊形的外角和都相等,等于360°,該選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題考查了命題與定理的知識(shí),解題的關(guān)鍵是了解判斷一個(gè)命題是假命題的時(shí)候可以舉出反例.5、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),相似三角形的判定與性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項(xiàng)C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項(xiàng)A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項(xiàng)D正確;取AB的中點(diǎn)O,連接OD、OH,∵正方形的邊長(zhǎng)為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點(diǎn)共線時(shí),DH最小,∴DH最小=2-2.故選項(xiàng)E正確,無法證明DH平分∠EHG,故選項(xiàng)B錯(cuò)誤,故選項(xiàng)ACDE正確,故選:ACDE.【考點(diǎn)】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,三角函數(shù),勾股定理、等高模型等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,難點(diǎn)在于選項(xiàng)E作輔助線并確定出DH最小時(shí)的情況.6、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個(gè)條件,即可推論出其余三個(gè),逐一進(jìn)行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項(xiàng)說法錯(cuò)誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應(yīng)該是:過圓心,且平分一條弧的直線垂直于這條弧所對(duì)的弦,選項(xiàng)說法錯(cuò)誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應(yīng)該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項(xiàng)說法錯(cuò)誤,符合題意;D、在一個(gè)圓內(nèi),平分一條弧和它所對(duì)弦的直線必經(jīng)過這個(gè)圓的圓心,選項(xiàng)說法正確,不符合題意;故選ABC.【考點(diǎn)】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.7、BCD【解析】【分析】根據(jù)函數(shù)與點(diǎn)的關(guān)系,一元二次方程根的判別式,不等式的性質(zhì),逐一計(jì)算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過點(diǎn)(-1,-1),,當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯(cuò)誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個(gè)不等的實(shí)數(shù)根,故D正確.故選:BCD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,不等式的基本性質(zhì),熟練掌握二次函數(shù)的性質(zhì),靈活使用根的判別式,準(zhǔn)確掌握不等式的基本性質(zhì)是解題的關(guān)鍵.三、填空題1、【解析】【分析】由“滋生函數(shù)”和“本源函數(shù)”的定義,運(yùn)用待定系數(shù)法求出函數(shù)的本源函數(shù).【詳解】解:由題意得解得∴函數(shù)的本源函數(shù)是.故答案為:.【考點(diǎn)】本題考查新定義運(yùn)算下的一次函數(shù)和二次函數(shù)的應(yīng)用,解題關(guān)鍵是充分理解新定義“本源函數(shù)”.2、3【解析】【分析】根據(jù)直角三角形的性質(zhì)得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點(diǎn)D為AB中點(diǎn),∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點(diǎn)】本題考查了直角三角形的性質(zhì),勾股定理,平行線分線段成比例,解題的關(guān)鍵是通過平行得到比例式.3、2【解析】【分析】設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,因點(diǎn)P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,當(dāng)點(diǎn)P在x軸上方時(shí),∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點(diǎn)】本題考查二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,勾股定理,利用坐標(biāo)求線段長(zhǎng)度是解題的關(guān)鍵.4、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長(zhǎng),即為EC的長(zhǎng).【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點(diǎn)】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.5、1或【解析】【分析】先運(yùn)用根的判別式求得k的取值范圍,進(jìn)而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點(diǎn)坐標(biāo),畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個(gè)交點(diǎn),可以有兩種情況:①過交點(diǎn)(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(diǎn)(一1,0),與相切時(shí),根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個(gè)交點(diǎn),∴,解得,當(dāng)k取最小整數(shù)時(shí),,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象,所以新圖象的解析式為(或)
:①因?yàn)闉榈模运膱D象從左到右是上升的,當(dāng)它與新圖象有3個(gè)交點(diǎn)時(shí)它一定過,把代入得所以,②與相切時(shí),圖象有三個(gè)交點(diǎn),,,解得.故答案為:1或.【考點(diǎn)】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識(shí)點(diǎn),掌握分類討論和直線與拋物線相切時(shí)判別式等于零是解答本題的關(guān)鍵.6、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進(jìn)行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當(dāng),即時(shí),方程有兩個(gè)不相等的實(shí)根;故①正確;當(dāng),解得:,方程有兩個(gè)同號(hào)的實(shí)數(shù)根,則當(dāng)時(shí),方程可能有兩個(gè)異號(hào)的實(shí)根;故②錯(cuò)誤;拋物線的對(duì)稱軸為:,則當(dāng)時(shí),方程的兩個(gè)實(shí)根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學(xué)的知識(shí)進(jìn)行解題.7、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.四、解答題1、(1)=;(2)證明見解析.【解析】【分析】(1)根據(jù)正方形的性質(zhì)和相似三角形的判定定理,得△CEF∽△ADF,可得=,進(jìn)而即可得到結(jié)論;(2)由AD∥CB,點(diǎn)E是BC的中點(diǎn),得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,進(jìn)而即可得到結(jié)論.【詳解】(1)∵,∴=.∵四邊形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,點(diǎn)E是BC的中點(diǎn),∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考點(diǎn)】本題主要考查正方形的性質(zhì),相似三角形的判定和性質(zhì)定理以及平行線分線段成比例定理,掌握相似三角形的對(duì)應(yīng)邊成比例,是解題的關(guān)鍵.2、(1)當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時(shí),PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長(zhǎng)定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當(dāng)時(shí),四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運(yùn)動(dòng)的時(shí)間為秒.∵t=9>8,∴t=9(舍去),∴當(dāng)t=2秒時(shí),PQ與⊙O相切.【考點(diǎn)】本題主要考查了切線長(zhǎng)定理,矩形的性質(zhì)與判定,勾股定理,平行四邊形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握切線長(zhǎng)定理.3、(1)z=﹣x+122(x≥168);(2)應(yīng)將房間定價(jià)確定為260元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)為8767元【解析】【分析】(1)入住房間z(間)等于80減去每天的房間空閑數(shù),列式并化簡(jiǎn)即可;(2)設(shè)利潤(rùn)為w元,由題意得w關(guān)于x的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)的對(duì)稱性及問題實(shí)際可得答案.【詳解】解:(1)由題意得:z=80﹣(x﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電池電源行業(yè)當(dāng)前競(jìng)爭(zhēng)格局與未來發(fā)展趨勢(shì)分析報(bào)告
- 2025年檢驗(yàn)檢測(cè)行業(yè)當(dāng)前市場(chǎng)規(guī)模及未來五到十年發(fā)展趨勢(shì)報(bào)告
- 支委會(huì)的召開課件
- 操作安全知識(shí)培訓(xùn)課件
- 2025年部編版新教材語文七年級(jí)上冊(cè)期末復(fù)習(xí)計(jì)劃
- (2025)中小學(xué)教師資格證考試教育學(xué)心理學(xué)試題庫(kù)及參考答案
- 2025全國(guó)企業(yè)員工全面質(zhì)量管理知識(shí)考試試題庫(kù)及參考答案
- (2025)物權(quán)法試題庫(kù)及參考答案
- 2025年保育員(中級(jí))操作證考試試題及答案
- 2024年土木工程師:“房屋建筑及施工”專業(yè)知識(shí)試題及答案
- 診斷與評(píng)估課件 第十六章 功能性評(píng)估學(xué)習(xí)資料
- 代建管理工作程序
- 繼發(fā)性顱腦損傷的護(hù)理
- 便秘的中醫(yī)護(hù)理
- 機(jī)電設(shè)備安裝工藝細(xì)部節(jié)點(diǎn)做法
- 17025實(shí)驗(yàn)室管理體系
- 多模態(tài)技術(shù)在智能養(yǎng)雞工廠中的研究現(xiàn)狀與展望
- 《美國(guó)司法體系》課件
- 《基于深度強(qiáng)化學(xué)習(xí)在游戲上的應(yīng)用》
- 小學(xué)信息技術(shù)試題(附答案)
- 《異常子宮出血診斷與治療指南(2022更新版)》解讀
評(píng)論
0/150
提交評(píng)論