




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省武岡市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編專(zhuān)題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、在自習(xí)課上,小芳同學(xué)將一張長(zhǎng)方形紙片ABCD按如圖所示的方式折疊起來(lái),她發(fā)現(xiàn)D、B兩點(diǎn)均落在了對(duì)角線(xiàn)AC的中點(diǎn)O處,且四邊形AECF是菱形.若AB=3cm,則陰影部分的面積為()A.1cm2 B.2cm2 C.cm2 D.cm22、如圖,長(zhǎng)方形中,,,將此長(zhǎng)方形折疊,使點(diǎn)與點(diǎn)重合,折痕為,則的長(zhǎng)為(
)A.12 B.8 C.10 D.133、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,若AC=3,AB=5,則CE的長(zhǎng)為()A. B. C. D.4、如圖,在2×2的正方形網(wǎng)格中有9個(gè)格點(diǎn),已經(jīng)取定點(diǎn)A和B,在余下的點(diǎn)中任取一點(diǎn)C,使△ABC為直角三角形的概率是(
)A. B. C. D.5、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點(diǎn),直線(xiàn)l經(jīng)過(guò)點(diǎn)D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.36、已知直角三角形紙片的兩條直角邊長(zhǎng)分別為m和n(m<n),過(guò)銳角頂點(diǎn)把該紙片剪成兩個(gè)三角形,若這兩個(gè)三角形都為等腰三角形,則()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=07、如圖,中,,將折疊,使點(diǎn)C與的中點(diǎn)D重合,折痕交于點(diǎn)M,交于點(diǎn)N,則線(xiàn)段的長(zhǎng)為(
).A. B. C.3 D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、圖,在菱形ABCD中,,是銳角,于點(diǎn)E,M是AB的中點(diǎn),連接MD,若,則的值為_(kāi)_____.2、如圖,Rt△ABC的兩條直角邊,.分別以Rt△ABC的三邊為邊作三個(gè)正方形.若四個(gè)陰影部分面積分別為,,,,則的值為_(kāi)_____,的值為_(kāi)_____.3、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來(lái),蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為_(kāi)_______米4、如圖,滑竿在機(jī)械槽內(nèi)運(yùn)動(dòng),∠ACB為直角,已知滑竿AB長(zhǎng)2.5米,頂點(diǎn)A在AC上滑動(dòng),量得滑竿下端B距C點(diǎn)的距離為1.5米,當(dāng)端點(diǎn)B向右移動(dòng)0.5米時(shí),滑竿頂端A下滑________米.5、在平面直角坐標(biāo)系中,點(diǎn)(3,﹣2)到原點(diǎn)的距離是_____.6、如圖,已知中,,,動(dòng)點(diǎn)M滿(mǎn)足,將線(xiàn)段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線(xiàn)段,連接,則的最小值為_(kāi)________.7、已知,在中,,,,則的面積為_(kāi)_.8、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.三、解答題(7小題,每小題10分,共計(jì)70分)1、我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中記載“今有竹高一丈八,末折抵地,去本6尺.問(wèn):折者高幾何?”譯文:一根竹子,原高一丈八,蟲(chóng)傷有病,一陣風(fēng)將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠(yuǎn).問(wèn):折處離地還有多高的竹子?(1丈=10尺)2、閱讀理解:【問(wèn)題情境】教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?【探索新知】從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積+4個(gè)直角三角形的面積.從而得數(shù)學(xué)等式:(a+b)2=c2+4×ab,化簡(jiǎn)證得勾股定理:a2+b2=c2.【初步運(yùn)用】(1)如圖1,若b=2a,則小正方形面積:大正方形面積=;(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a=4,b=6,此時(shí)空白部分的面積為;(3)如圖3,將這四個(gè)直角三角形緊密地拼接,形成風(fēng)車(chē)狀,已知外圍輪廓(實(shí)線(xiàn))的周長(zhǎng)為24,OC=3,求該風(fēng)車(chē)狀圖案的面積.(4)如圖4,將八個(gè)全等的直角三角形緊密地拼接,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=40,則S2=.【遷移運(yùn)用】如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問(wèn),小麗拼出圖5的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫(xiě)出此等量關(guān)系式及其推導(dǎo)過(guò)程.3、閱讀理解:課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀(guān)察:3,4,5;5,12,13;7,24,25;9,40,41;……學(xué)生發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒(méi)有間斷過(guò),于是王老師提出以下問(wèn)題讓學(xué)生解決.(1)請(qǐng)你根據(jù)上述的規(guī)律寫(xiě)出下一組勾股數(shù):11,_________,_________;(2)若第一個(gè)數(shù)用字母(為奇數(shù),且)表示,則后兩個(gè)數(shù)用含的代數(shù)式分別怎么表示?聰明的小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律:,,,……于是他很快表示出了第二個(gè)數(shù)為,則用含的代數(shù)式表示第三個(gè)數(shù)為_(kāi)________.(3)用所學(xué)知識(shí)說(shuō)明(2)中用表示的三個(gè)數(shù)是勾股數(shù).4、如圖②,它可以看作是由邊長(zhǎng)為a、b、c的兩個(gè)直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點(diǎn)在同一條直線(xiàn)上,(1)請(qǐng)從面積出發(fā)寫(xiě)出一個(gè)表示a、b、c的關(guān)系的等式;(要求寫(xiě)出過(guò)程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個(gè)圖形中面積關(guān)系滿(mǎn)足的有_______個(gè).(3)如圖⑥,直角三角形的兩直角邊長(zhǎng)分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_(kāi)______.5、我市《道路交通管理?xiàng)l例》規(guī)定:小汽車(chē)在城市街道上的行駛速度不得超過(guò)60km/h.如圖,一輛小汽車(chē)在一條城市街道上沿直道行駛,某一時(shí)刻剛好行駛到車(chē)速檢測(cè)點(diǎn)A正前方30m的C處,2秒后又行駛到與車(chē)速檢測(cè)點(diǎn)A相距50m的B處.請(qǐng)問(wèn)這輛小汽車(chē)超速了嗎?若超速,請(qǐng)求出超速了多少?6、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車(chē)在公路上疾駛.他趕緊拿出紅外線(xiàn)測(cè)距儀,測(cè)得汽車(chē)與他相距400米,10秒后,汽車(chē)與他相距500米,你能幫小王計(jì)算敵方汽車(chē)的速度嗎?7、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長(zhǎng);(2)求四邊形ABCD的面積.-參考答案-一、單選題1、D【解析】【分析】由菱形的性質(zhì)得到∠FCO=∠ECO,進(jìn)而證明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面積為2,最后由陰影部分的面積=S菱形AECF解題.【詳解】解:∵四邊形AECF是菱形,AB=3,∴假設(shè)BE=x,則AE=3﹣x,CE=3﹣x,∵四邊形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,則菱形的面積是:AE?BC=2.∴陰影部分的面積=S菱形AECF=cm2.故選:D.【考點(diǎn)】本題考查菱形的性質(zhì)、勾股定理、含30°直角三角形的性質(zhì)等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長(zhǎng)方形∴∠EAB=90°∴在中由勾股定理有即化簡(jiǎn)得解得故選:D.【考點(diǎn)】本題考查了折疊問(wèn)題求折痕或其他邊長(zhǎng),主要可根據(jù)折疊前后兩圖形的全等條件,把某個(gè)直角三角形的三邊都用同一未知量表示出來(lái),并根據(jù)勾股定理建立方程,進(jìn)而可以求解.3、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線(xiàn)和對(duì)頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長(zhǎng)為.故選A.【考點(diǎn)】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是推出∠CEF=∠CFE.4、C【解析】【分析】找到可以組成直角三角形的點(diǎn),根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點(diǎn)和組成直角三角形.,故選:C.【考點(diǎn)】本題考查了概率公式,解題的關(guān)鍵是掌握如果一個(gè)事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結(jié)果,那么事件的概率(A).5、A【解析】【分析】把要求的最大值的兩條線(xiàn)段經(jīng)過(guò)平移后形成一條線(xiàn)段,然后再根據(jù)垂線(xiàn)段最短來(lái)進(jìn)行計(jì)算即可.【詳解】解:如圖,過(guò)點(diǎn)C作CK⊥l于點(diǎn)K,過(guò)點(diǎn)A作AH⊥BC于點(diǎn)H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點(diǎn)D為BC中點(diǎn),∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長(zhǎng)AE,過(guò)點(diǎn)C作CN⊥AE于點(diǎn)N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當(dāng)直線(xiàn)l⊥AC時(shí),最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.6、C【解析】【分析】如圖,根據(jù)等腰三角形的性質(zhì)和勾股定理可得m2+m2=(n-m)2,整理即可求解【詳解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故選C.7、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長(zhǎng),即可得出結(jié)果.【詳解】解:∵D是AB中點(diǎn),AB=4,∴AD=BD=2,∵將△ABC折疊,使點(diǎn)C與AB的中點(diǎn)D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點(diǎn)】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運(yùn)用折疊的性質(zhì)是本題的關(guān)鍵.二、填空題1、【解析】【分析】延長(zhǎng)DM交CB的延長(zhǎng)線(xiàn)于點(diǎn)首先證明,設(shè),利用勾股定理構(gòu)建方程求出x即可解決問(wèn)題.【詳解】延長(zhǎng)DM交CB的延長(zhǎng)線(xiàn)于點(diǎn)H,四邊形ABCD是菱形,,,,,,≌,,,,設(shè),,,,,,或舍棄,,故答案為.【考點(diǎn)】本題考查了菱形的性質(zhì)、勾股定理、線(xiàn)段的垂直平分線(xiàn)的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),正確添加輔助線(xiàn),構(gòu)造全等三角形解決問(wèn)題是解決本題的關(guān)鍵.2、
24
0【解析】【分析】先證明從而可得再利用圖形的面積關(guān)系可得:兩式相減可得:而證明從而可得第二空的答案.【詳解】解:如圖,以Rt△ABC的三邊為邊作三個(gè)正方形,兩式相減可得:而故答案為:24,0【考點(diǎn)】本題考查的是正方形的性質(zhì),全等三角形的判定與性質(zhì),圖形面積之間的關(guān)系,證明是解本題的關(guān)鍵.3、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.4、0.5【解析】【詳解】結(jié)合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點(diǎn)睛:本題考查正確運(yùn)用勾股定理.善于觀(guān)察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.5、【解析】【分析】根據(jù)兩點(diǎn)的距離公式計(jì)算求解即可.【詳解】解:由題意知點(diǎn)(3,﹣2)到原點(diǎn)的距離為故答案為:.【考點(diǎn)】本題考查了用勾股定理求解兩點(diǎn)的距離公式.解題的關(guān)鍵在于熟練掌握距離公式:、兩點(diǎn)間的距離公式為.6、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線(xiàn)段AB上時(shí),最小,求出最小值即可.【詳解】解:∵線(xiàn)段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線(xiàn)段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.7、2或14#14或2【解析】【分析】過(guò)點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長(zhǎng),即可求解.【詳解】解:過(guò)點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類(lèi)討論思想.8、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線(xiàn)段相等,對(duì)應(yīng)點(diǎn)的連線(xiàn)段被折痕垂直平分.三、解答題1、尺【解析】【分析】設(shè)原處還有尺高的竹子,由題意得到折后竹子豎直高度+斜倒部分的長(zhǎng)度=18尺,再運(yùn)用勾股定理列方程即可求解.【詳解】解:設(shè)折處離地還有尺高的竹子,如圖,在中,AC=x尺,則AB=一丈八-AC=(18-x)尺由勾股定理得,所以,解得:.答:折處離地還有尺高的竹子.【考點(diǎn)】此題考查勾股定理解決實(shí)際問(wèn)題.此題中的直角三角形只知道一直角邊,另兩邊未知往往要列方程求解.2、【初步運(yùn)用】(1)5:9;(2)28;(3)24;(4);【遷移運(yùn)用】a2+b2﹣ab=c2,證明見(jiàn)解析【解析】【分析】初步運(yùn)用:(1)如圖1,求出小正方形的面積,大正方形的面積即可;(2)根據(jù)空白部分的面積=小正方形的面積﹣2個(gè)直角三角形的面積計(jì)算即可;(3)可設(shè)AC=x,根據(jù)勾股定理列出方程可求x,再根據(jù)直角三角形面積公式計(jì)算即可求解;(4)根據(jù)圖形的特征得出四邊形MNKT的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,從而用x,y表示出S1,S2,S3,得出答案即可.遷移運(yùn)用:根據(jù)大正三角形面積=三個(gè)全等三角形面積+小正三角形面積,構(gòu)建關(guān)系式即可.【詳解】解:【初步運(yùn)用】(1)由題意:b=2a,c=,∴小正方形面積:大正方形面積=5a2:9a2=5:9,故答案為:5:9;(2)空白部分的面積為=52﹣2××4×6=28,故答案為:28;(3)24÷4=6,設(shè)AC=x,依題意有:(x+3)2+32=(6﹣x)2,解得x=1,∴面積為:×(3+1)×3×4=×4×3×4=24,故該飛鏢狀圖案的面積是24;(4)將四邊形MTKN的面積設(shè)為x,將其余八個(gè)全等的三角形面積一個(gè)設(shè)為y,∵正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,S1+S2+S3=40,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=40,∴x+4y=,∴S2=x+4y=,故答案為:;[遷移運(yùn)用]結(jié)論:a2+b2﹣ab=c2.理由:由題意:大正三角形面積=三個(gè)全等三角形面積+小正三角形面積,可得:(a+b)×k(a+b)=3××b×ka+×c×ck,∴(a+b)2=3ab+c2,∴a2+b2﹣ab=c2.【考點(diǎn)】本題考查勾股定理的證明和應(yīng)用,根據(jù)圖形得出面積關(guān)系是解題的關(guān)鍵.3、(1)60,61(2)(3)見(jiàn)解析【解析】【分析】(1)分析所給四組的勾股數(shù):3、4、5;5、12、13;7、24、25;9、40、41;可得下一組一組勾股數(shù):11,60,61;(2)根據(jù)所提供的例子發(fā)現(xiàn)股是勾的平方減去1的二分之一,弦是勾的平方加1的二分之一;(3)依據(jù)勾股定理的逆定理進(jìn)行證明即可.(1)解:∵3、4、5;5、12、13;7、24、25;9、40、41;…,∴11,60,61;故答案為:60,61;(2)解:第一個(gè)數(shù)用字母a(a為奇數(shù),且a≥3)表示,第二數(shù)為;則用含a的代數(shù)式表示第三個(gè)數(shù)為;故答案為:;(3)解:∵,,∴,又∵a為奇數(shù),且a≥3,∴由a,,三個(gè)數(shù)組成的數(shù)是勾股數(shù).【考點(diǎn)】本題考查的是勾股數(shù)之間的關(guān)系,屬規(guī)律型問(wèn)題,根據(jù)題目中所給的勾股數(shù)及關(guān)系式進(jìn)行猜想、證明即可.4、(1)(2)3(3)7.5【解析】【分析】(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銀行債務(wù)員面試題及答案
- 2025年專(zhuān)四英語(yǔ)模擬試題及答案
- 2025年銀行宣傳面試題目及答案
- 2025年銀行信貸測(cè)試工程師面試題及答案
- 2025年銀行升職領(lǐng)導(dǎo)力測(cè)試題及答案
- 2025年銀行入行筆試題目及答案
- 2025年銀行面試題庫(kù)及解析答案
- 2025年專(zhuān)升本大題題庫(kù)及答案
- 2025年專(zhuān)利基本知識(shí)試題及答案
- 2025年專(zhuān)業(yè)監(jiān)理工程師試題八
- 意識(shí)障礙患者的安全防護(hù)護(hù)理
- 江蘇二升三數(shù)學(xué)試卷
- 2025年生物科技研發(fā)專(zhuān)家知識(shí)技能檢測(cè)試題及答案
- 企業(yè)員工焦慮課件
- 行吊安全操作規(guī)程及注意事項(xiàng)
- 鋰電池起火應(yīng)急處置培訓(xùn)
- 客服技能比拼活動(dòng)方案
- 大集活動(dòng)策劃方案
- 2025屆陜西省西安市碑林區(qū)鐵一中學(xué)英語(yǔ)七下期末統(tǒng)考試題含答案
- 念佛堂機(jī)構(gòu)管理制度
- 上海市土建監(jiān)理綜合項(xiàng)目工程師考試題有答案
評(píng)論
0/150
提交評(píng)論