2026屆湖北省武漢市江漢區(qū)中考三模數(shù)學試題含解析_第1頁
2026屆湖北省武漢市江漢區(qū)中考三模數(shù)學試題含解析_第2頁
2026屆湖北省武漢市江漢區(qū)中考三模數(shù)學試題含解析_第3頁
2026屆湖北省武漢市江漢區(qū)中考三模數(shù)學試題含解析_第4頁
2026屆湖北省武漢市江漢區(qū)中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2026屆湖北省武漢市江漢區(qū)中考三模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.2.下列事件中,必然事件是()A.若ab=0,則a=0B.若|a|=4,則a=±4C.一個多邊形的內(nèi)角和為1000°D.若兩直線被第三條直線所截,則同位角相等3.函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點B.給出如下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CA=AP.其中所有正確結(jié)論的序號是()A.①②③ B.②③④ C.①③④ D.①②④4.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數(shù)法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1055.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個小箱子裝洗衣粉(

)A.6.5千克B.7.5千克C.8.5千克D.9.5千克6.不透明的袋子中裝有形狀、大小、質(zhì)地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是()A.摸出的是3個白球 B.摸出的是3個黑球C.摸出的是2個白球、1個黑球 D.摸出的是2個黑球、1個白球7.方程有兩個實數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<18.一、單選題如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,則BE的長為()A.5 B.4 C.3 D.29.兩個一次函數(shù),,它們在同一直角坐標系中的圖象大致是()A. B. C. D.10.若點A(1,a)和點B(4,b)在直線y=-2x+m上,則a與b的大小關系是()A.a(chǎn)>b B.a(chǎn)<bC.a(chǎn)=b D.與m的值有關二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:_________.12.若式子有意義,則x的取值范圍是_____________.13.已知代數(shù)式2x﹣y的值是,則代數(shù)式﹣6x+3y﹣1的值是_____.14.已知二次函數(shù)的部分圖象如圖所示,則______;當x______時,y隨x的增大而減?。?5.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.16.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.17.如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點O,則線段AO的最大值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,與函數(shù)的圖象的一個交點為.(1)求,,的值;(2)將線段向右平移得到對應線段,當點落在函數(shù)的圖象上時,求線段掃過的面積.19.(5分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當a=6時,求圖案中陰影部分正六邊形的面積.20.(8分)如圖,兒童游樂場有一項射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(n,0)(1)點C坐標為;(2)求出小球飛行中最高點N的坐標(用含有n的代數(shù)式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.21.(10分)在平面直角坐標系中,O為坐標原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.①在旋轉(zhuǎn)過程中,當∠BAG′=90°時,求α的大??;②在旋轉(zhuǎn)過程中,求AF′的長取最大值時,點F′的坐標及此時α的大?。ㄖ苯訉懗鼋Y(jié)果即可).22.(10分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當點E在邊BC上時,求證DE=EB;如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關系,并加以證明;如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.23.(12分)如圖,在△ABC中,D為BC邊上一點,AC=DC,E為AB邊的中點,(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);(2)連接EF,若BD=4,求EF的長.24.(14分)如圖,在四邊形中,為的中點,于點,,,,求的度數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.2、B【解析】

直接利用絕對值的性質(zhì)以及多邊形的性質(zhì)和平行線的性質(zhì)分別分析得出答案.【詳解】解:A、若ab=0,則a=0,是隨機事件,故此選項錯誤;B、若|a|=4,則a=±4,是必然事件,故此選項正確;C、一個多邊形的內(nèi)角和為1000°,是不可能事件,故此選項錯誤;D、若兩直線被第三條直線所截,則同位角相等,是隨機事件,故此選項錯誤;故選:B.【點睛】此題主要考查了事件的判別,正確把握各命題的正確性是解題關鍵.3、C【解析】解:∵A、B是反比函數(shù)上的點,∴S△OBD=S△OAC=,故①正確;當P的橫縱坐標相等時PA=PB,故②錯誤;∵P是的圖象上一動點,∴S矩形PDOC=4,∴S四邊形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正確;連接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正確;綜上所述,正確的結(jié)論有①③④.故選C.點睛:本題考查的是反比例函數(shù)綜合題,熟知反比例函數(shù)中系數(shù)k的幾何意義是解答此題的關鍵.4、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數(shù)法—表示較大的數(shù).5、C【解析】【分析】設每個小箱子裝洗衣粉x千克,根據(jù)題意列方程即可.【詳解】設每個小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個小箱子裝洗衣粉8.5千克,故選C.【點睛】本題考查了列一元一次方程解實際問題,弄清題意,找出等量關系是解答本題的關鍵.6、A【解析】由題意可知,不透明的袋子中總共有2個白球,從袋子中一次摸出3個球都是白球是不可能事件,故選B.7、D【解析】當k=1時,原方程不成立,故k≠1,當k≠1時,方程為一元二次方程.∵此方程有兩個實數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.8、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉(zhuǎn)

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),主要利用了旋轉(zhuǎn)前后對應邊相等以及旋轉(zhuǎn)角的定義.9、B【解析】

根據(jù)各選項中的函數(shù)圖象判斷出a、b的符號,然后分別確定出兩直線經(jīng)過的象限以及與y軸的交點位置,即可得解.【詳解】解:由圖可知,A、B、C選項兩直線一條經(jīng)過第一三象限,另一條經(jīng)過第二四象限,

所以,a、b異號,

所以,經(jīng)過第一三象限的直線與y軸負半軸相交,經(jīng)過第二四象限的直線與y軸正半軸相交,

B選項符合,

D選項,a、b都經(jīng)過第二、四象限,

所以,兩直線都與y軸負半軸相交,不符合.

故選:B.【點睛】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b(k≠0),k>0時,一次函數(shù)圖象經(jīng)過第一三象限,k<0時,一次函數(shù)圖象經(jīng)過第二四象限,b>0時與y軸正半軸相交,b<0時與y軸負半軸相交.10、A【解析】【分析】根據(jù)一次函數(shù)性質(zhì):中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.由-2<0得,當x12時,y1>y2.【詳解】因為,點A(1,a)和點B(4,b)在直線y=-2x+m上,-2<0,所以,y隨x的增大而減小.因為,1<4,所以,a>b.故選A【點睛】本題考核知識點:一次函數(shù)性質(zhì).解題關鍵點:判斷一次函數(shù)中y與x的大小關系,關鍵看k的符號.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】先提取公因式b,再利用完全平方公式進行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)12、x<【解析】由題意得:1﹣2x>0,解得:,故答案為.13、【解析】

由題意可知:2x-y=,然后等式兩邊同時乘以-3得到-6x+3y=-,然后代入計算即可.【詳解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案為-.【點睛】本題主要考查的是求代數(shù)式的值,利用等式的性質(zhì)求得-6x+3y=-是解題的關鍵.14、3,>1【解析】

根據(jù)函數(shù)圖象與x軸的交點,可求出c的值,根據(jù)圖象可判斷函數(shù)的增減性.【詳解】解:因為二次函數(shù)的圖象過點.

所以,

解得.

由圖象可知:時,y隨x的增大而減?。?/p>

故答案為(1).3,(2).>1【點睛】此題考查二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合法是解決函數(shù)問題經(jīng)常采用的一種方法,關鍵是要找出圖象與函數(shù)解析式之間的聯(lián)系.15、或【解析】

由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據(jù)題意,,.若點在矩形ABCD的內(nèi)部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【點睛】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質(zhì);(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據(jù)相似三角形對應邊成比例求出三角形的邊長.16、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質(zhì)可知;AE=AC=3、DC=DE.則EB=2.設DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質(zhì)可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).17、【解析】

過O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進而可得AF=AO,根據(jù)正方形的性質(zhì)可得OB=OC,∠BOC=90°,由銳角互余的關系可得∠AOB=∠COF,進而可得△AOB≌△COF,即可證明AB=CF,當點A、C、F三點不共線時,根據(jù)三角形的三邊關系可得AC+CF>AF,當點A、C、F三點共線時可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【詳解】如圖,過O作OF⊥AO且使OF=AO,連接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AF=AO,∵四邊形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,當點A、C、F三點不共線時,AC+CF>AF,當點A、C、F三點共線時,AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AF=AO=7,∴AO=.故答案為【點睛】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握相關定理及性質(zhì)是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)m=4,n=1,k=3.(2)3.【解析】

(1)把點,分別代入直線中即可求出m=4,再把代入直線即可求出n=1.把代入函數(shù)求出k即可;(2)由(1)可求出點B的坐標為(0,4),點B‘是由點B向右平移得到,故點B’的縱坐標為4,把它代入反比例函數(shù)解析式即可求出它的橫坐標,根據(jù)平移的知識可知四邊形AA’B’B是平行四邊形,再根據(jù)平行四邊形的面積計算公式計算即可.【詳解】解:(1)把點,分別代入直線中得:-4+m=0,m=4,∴直線解析式為.把代入得:n=-3+4=1.∴點C的坐標為(3,1)把(3,1)代入函數(shù)得:解得:k=3.∴m=4,n=1,k=3.(2)如圖,設點B的坐標為(0,y)則y=-0+4=4∴點B的坐標是(0,4)當y=4時,解得,∴點B’(,4)∵A’,B’是由A,B向右平移得到,∴四邊形AA’B’B是平行四邊形,故四邊形AA’B’B的面積=4=3.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題及函數(shù)的平移,利用數(shù)形結(jié)合思想作出圖形是解題的關鍵.19、(1)如圖所示見解析,(2)當半徑為6時,該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點,如圖所示,連接所得六等分點,作出兩個等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.20、(1)(3,3);(2)頂點N坐標為(,);(3)詳見解析;(4)<n<.【解析】

(1)由正方形的性質(zhì)及A、B、D三點的坐標求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,據(jù)此可得函數(shù)解析式,配方成頂點式即可得出答案;(3)將點N的坐標代入y=x2,看是否符合解析式即可;(4)根據(jù)“小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐”知:當x=2時y>3,當x=3時y<2,據(jù)此列出關于n的不等式組,解之可得.【詳解】(1)∵A(2,2),B(3,2),D(2,3),∴AD=BC=1,則點C(3,3),故答案為:(3,3);(2)把(0,0)(n,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線解析式為y=﹣x2+nx=﹣(x﹣)2+,∴頂點N坐標為(,);(3)由(2)把x=代入y=x2=()2=,∴拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)根據(jù)題意,得:當x=2時y>3,當x=3時y<2,即,解得:<n<.【點睛】本題主要考查二次函數(shù)的應用,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及將實際問題轉(zhuǎn)化為二次函數(shù)的問題能力.21、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【解析】

(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,②當α=315°時,A、B、F′在一條直線上時,AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉(zhuǎn)角α=30°,根據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,綜上所述,旋轉(zhuǎn)角α=30°或150°時,∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【點睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉(zhuǎn)變換的性質(zhì)以及特殊角的三角函數(shù)值的應用.22、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論