




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省東臺(tái)市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(
)A.10 B.8 C.6或10 D.8或102、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長(zhǎng)是()A. B.3 C.3 D.33、如圖,三角形紙片ABC,點(diǎn)D是BC邊上一點(diǎn),連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點(diǎn)G,連接BE交AD于點(diǎn)F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點(diǎn)F到BC的距離為()A. B. C. D.4、如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)的點(diǎn)F處,連接CF,則CF的長(zhǎng)為()A. B. C. D.5、如圖,將直角三角形紙片沿AD折疊,使點(diǎn)B落在AC延長(zhǎng)線上的點(diǎn)E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.6、如圖,△ABC中,,以其三邊分別向外側(cè)作正方形,然后將整個(gè)圖形放置于如圖所示的長(zhǎng)方形中,若要求圖中兩個(gè)陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積7、下列各組數(shù)據(jù)為三角形的三邊,能構(gòu)成直角三角形的是(
)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,5第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長(zhǎng)為_(kāi)______2、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.3、在繼承和發(fā)揚(yáng)紅色學(xué)校光榮傳統(tǒng),與時(shí)俱進(jìn),把育英學(xué)校建成一所文明的、受社會(huì)尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.4、如圖,已知四邊形中,,則四邊形的面積等于________.5、如圖,在中,,分別以,,邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”,當(dāng),時(shí),陰影部分的面積為_(kāi)_______.6、在一棵樹(shù)的5米高B處有兩個(gè)猴子為搶吃池塘邊水果,一只猴子爬下樹(shù)跑到A處(離樹(shù)10米)的池塘邊.另一只爬到樹(shù)頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過(guò)的距離相等,則這棵樹(shù)高_(dá)______米.7、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長(zhǎng)為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.8、已知a、b、c是一個(gè)三角形的三邊長(zhǎng),如果滿足,則這個(gè)三角形的形狀是_______.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,在△ABC和△DEB中,AC∥BE,∠C=90°,AB=DE,點(diǎn)D為BC的中點(diǎn),.(1)求證:△ABC≌△DEB.(2)連結(jié)AE,若BC=4,直接寫(xiě)出AE的長(zhǎng).2、在△ABC中,,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為直角三角形時(shí),求t的值.3、如圖,在筆直的鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個(gè)中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應(yīng)建在距A多遠(yuǎn)處?4、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時(shí)施工,過(guò)點(diǎn)B作一直線m(在山的旁邊經(jīng)過(guò)),過(guò)點(diǎn)C作一直線l與m相交于D點(diǎn),經(jīng)測(cè)量,,米,米.若施工隊(duì)每天挖100米,求施工隊(duì)幾天能挖完?5、如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1.(1)請(qǐng)?jiān)谒o網(wǎng)格中畫(huà)一個(gè)邊長(zhǎng)分別為,,的三角形;(2)此三角形的面積是.6、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.7、如圖,點(diǎn)B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長(zhǎng).-參考答案-一、單選題1、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.2、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對(duì)稱軸,對(duì)稱點(diǎn)的連線被對(duì)稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長(zhǎng)可求,再利用勾股定理即可求出BC的長(zhǎng).【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.3、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點(diǎn)F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問(wèn)題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點(diǎn)F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點(diǎn)F到BC的距離為.故選:C【考點(diǎn)】此題考查了翻折變換,三角形的面積,勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.4、C【解析】【分析】連接BF,(見(jiàn)詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點(diǎn)E是BC的中點(diǎn),可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長(zhǎng)度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長(zhǎng)度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點(diǎn)】此題考查矩形的性質(zhì)和折疊問(wèn)題,解題關(guān)鍵在于利用好折疊的性質(zhì),對(duì)應(yīng)點(diǎn)的連線被折痕垂直平分.5、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長(zhǎng),利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點(diǎn)】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計(jì)算公式是解題的關(guān)鍵.6、D【解析】【分析】如圖所示,過(guò)點(diǎn)C作CN⊥AB于N,延長(zhǎng)AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過(guò)點(diǎn)C作CN⊥AB于N,延長(zhǎng)AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠正確作出輔助線,構(gòu)造全等三角形.7、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進(jìn)行判斷.【詳解】A、42+72≠82,故不能構(gòu)成直角三角形;B、22+22≠22,故不能構(gòu)成直角三角形;C、2+2=4,故不能構(gòu)成三角形,不能構(gòu)成直角三角形;D、52+122=132,故能構(gòu)成直角三角形,故選D.【考點(diǎn)】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.二、填空題1、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長(zhǎng),進(jìn)而可得出BD的長(zhǎng),根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長(zhǎng).【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.2、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)的連線段被折痕垂直平分.3、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長(zhǎng)為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點(diǎn)】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.4、36【解析】【分析】連接AC,先根據(jù)勾股定理求出AC的長(zhǎng)度,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,最后利用三角形的面積公式求解即可.【詳解】連接AC,如下圖所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四邊形ABCD=AB?BC+AC?AD=×3×4+×5×12=36.【考點(diǎn)】本題考查了勾股定理及勾股定理的逆定理,正確作出輔助線是解題的關(guān)鍵.5、24【解析】【分析】根據(jù)勾股定理得到AC2=AB2-BC2,先求解AC,再根據(jù)陰影部分的面積等于直角三角形的面積加上以AC,BC為直徑的半圓面積,再減去以AB為直徑的半圓面積即可.【詳解】解:由勾股定理得,AC2=AB2-BC2=64,則陰影部分的面積,故答案為24.【考點(diǎn)】本題考查的是勾股定理、半圓面積計(jì)算,掌握勾股定理和半圓面積公式是解題的關(guān)鍵.6、【解析】【分析】由題意知AD+DB=BC+CA,設(shè)BD=x,則AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,樹(shù)高CD=(5+x)米即可.【詳解】解:由題意知AD+DB=BC+CA,且CA=10米,BC=5米,設(shè)BD=x,則AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故樹(shù)高為CD=5+x=7.5(米),答:樹(shù)高為7.5米.故答案為:7.5.【考點(diǎn)】本題考查了勾股定理在實(shí)際生活中的應(yīng)用,本題中找到AD+DB=BC+CA的等量關(guān)系,并根據(jù)勾股定理列方程求解是解題的關(guān)鍵.7、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點(diǎn)】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長(zhǎng)的兩個(gè)正方形的面積和等于以斜邊為邊長(zhǎng)的面積.8、直角三角形【解析】【分析】根據(jù)絕對(duì)值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析;(2)【解析】【分析】(1)根據(jù)平行可得∠DBE=90°,再由HL定理證明直角三角形全等即可;(2)構(gòu)造,利用矩形性質(zhì)和勾股定理即可求出AE長(zhǎng).【詳解】(1)∵AC∥BE,∴∠C+∠DBE=180°.∴∠DBE=180°-∠C=180°-90°=90°.∴△ABC和△DEB都是直角三角形.∵點(diǎn)D為BC的中點(diǎn),,∴AC=DB.
∵AB=DE,∴Rt△ABC≌Rt△DEB(HL).(2).過(guò)程如下:連接AE、過(guò)A點(diǎn)作AH⊥BE,∵∠C=90°,∠DBE=90°.∴,,∴AH=BC=4,,∴,在中,.【考點(diǎn)】本題主要考查了直角三角形全等的判定和勾股定理解三角形,解題關(guān)鍵是構(gòu)造直角三角形,利用用平行線間的距離處處相等得線段AH=BC,從而利用勾股定理求AE.2、當(dāng)△ABP為直角三角形時(shí),t=4或.【解析】【分析】當(dāng)△ABP為直角三角形時(shí),分兩種情況:①當(dāng)∠APB為直角時(shí),②當(dāng)∠BAP為直角時(shí),分別求出此時(shí)t的值即可.【詳解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由題意得:BP=tcm.,①當(dāng)∠APB為直角時(shí),如圖①,點(diǎn)P與點(diǎn)C重合,BP=BC=4cm,∴t=4;②當(dāng)∠BAP為直角時(shí),如圖②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:當(dāng)△ABP為直角三角形時(shí),t=4或.【考點(diǎn)】本題考查了勾股定理以及直角三角形的知識(shí),解答本題的關(guān)鍵是掌握勾股定理的應(yīng)用,以及分類討論,否則會(huì)出現(xiàn)漏解.3、E應(yīng)建在距A點(diǎn)15km處【解析】【分析】設(shè),則,根據(jù)勾股定理求得和,再根據(jù)列式計(jì)算即可;【詳解】設(shè),則,由勾股定理得:在中,,在中,,由題意可知:,所以:,解得:.所以,E應(yīng)建在距A點(diǎn)15km處.【考點(diǎn)】本題主要考查了勾股定理的實(shí)際應(yīng)用,準(zhǔn)確計(jì)算是解題的關(guān)鍵.4、施工隊(duì)6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)部協(xié)調(diào)管理辦法
- 內(nèi)部簽證管理辦法
- 軍事監(jiān)獄管理辦法
- 軍校管理辦法試行
- 農(nóng)業(yè)用戶管理辦法
- 農(nóng)戶水稻管理辦法
- 農(nóng)村廟宇管理辦法
- 農(nóng)村生產(chǎn)管理辦法
- 農(nóng)民教師管理辦法
- 農(nóng)藥日常管理辦法
- 片劑2片劑常用輔料
- 新建三座鋼結(jié)構(gòu)人行天橋監(jiān)理規(guī)劃
- 新版城市居住區(qū)規(guī)劃設(shè)計(jì)規(guī)范
- 供應(yīng)商往來(lái)對(duì)賬確認(rèn)函(財(cái)務(wù)文書(shū)模板)
- GB/T 778.1-2018飲用冷水水表和熱水水表第1部分:計(jì)量要求和技術(shù)要求
- GB/T 6725-2017冷彎型鋼通用技術(shù)要求
- 2022年泰安市文化和旅游系統(tǒng)事業(yè)單位招聘筆試試題及答案
- ISO9001新產(chǎn)品研發(fā)控制程序
- 防臺(tái)風(fēng)、暴雨應(yīng)急預(yù)案
- 提高口服藥準(zhǔn)確服用率品管圈ppt課件
- 市政工程類建筑施工項(xiàng)目危險(xiǎn)源辨識(shí)及風(fēng)險(xiǎn)管控清單
評(píng)論
0/150
提交評(píng)論