泰興市濟(jì)川中學(xué)2026屆中考猜題數(shù)學(xué)試卷含解析_第1頁
泰興市濟(jì)川中學(xué)2026屆中考猜題數(shù)學(xué)試卷含解析_第2頁
泰興市濟(jì)川中學(xué)2026屆中考猜題數(shù)學(xué)試卷含解析_第3頁
泰興市濟(jì)川中學(xué)2026屆中考猜題數(shù)學(xué)試卷含解析_第4頁
泰興市濟(jì)川中學(xué)2026屆中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

泰興市濟(jì)川中學(xué)2026屆中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E給好落在AB的延長(zhǎng)線上,連接AD,下列結(jié)論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE2.正方形ABCD在直角坐標(biāo)系中的位置如圖所示,將正方形ABCD繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)180°后,C點(diǎn)的坐標(biāo)是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)3.已知二次函數(shù)y=(x+m)2–n的圖象如圖所示,則一次函數(shù)y=mx+n與反比例函數(shù)y=的圖象可能是()A. B. C. D.4.關(guān)于x的方程x2+(k2﹣4)x+k+1=0的兩個(gè)根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣25.在直角坐標(biāo)系中,已知點(diǎn)P(3,4),現(xiàn)將點(diǎn)P作如下變換:①將點(diǎn)P先向左平移4個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)P1;②作點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P2;③將點(diǎn)P繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)P3,則P1,P2,P3的坐標(biāo)分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)6.如圖是一個(gè)幾何體的主視圖和俯視圖,則這個(gè)幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長(zhǎng)方體7.若△ABC與△DEF相似,相似比為2:3,則這兩個(gè)三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:48.如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°9.如果關(guān)于的不等式組的整數(shù)解僅有、,那么適合這個(gè)不等式組的整數(shù)、組成的有序數(shù)對(duì)共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)10.有理數(shù)a,b,c,d在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)>﹣4 B.bd>0 C.|a|>|b| D.b+c>0二、填空題(共7小題,每小題3分,滿分21分)11.如果兩個(gè)相似三角形的面積的比是4:9,那么它們對(duì)應(yīng)的角平分線的比是_____.12.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點(diǎn)C是折疊后的上一動(dòng)點(diǎn),連接并延長(zhǎng)BC交⊙O于點(diǎn)D,點(diǎn)E是CD的中點(diǎn),連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請(qǐng)將正確答案的序號(hào)填在橫線上)13.若式子有意義,則x的取值范圍是_____________.14.如圖所示,一個(gè)寬為2cm的刻度尺在圓形光盤上移動(dòng),當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的半徑是____cm.15.如圖,直線經(jīng)過、兩點(diǎn),則不等式的解集為_______.16.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計(jì)).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時(shí)發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時(shí)間忽略不計(jì)),小剛與學(xué)校的距離s(單位:米)與他所用的時(shí)間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時(shí)與家的距離是1200米,從上公交車到他到達(dá)學(xué)校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時(shí)乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號(hào)是_____.17.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,線段的長(zhǎng)為8,則拋物線的對(duì)稱軸為直線________________.三、解答題(共7小題,滿分69分)18.(10分)如圖,?ABCD中,點(diǎn)E,F(xiàn)分別是BC和AD邊上的點(diǎn),AE垂直平分BF,交BF于點(diǎn)P,連接EF,PD.求證:平行四邊形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.19.(5分)在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長(zhǎng)與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點(diǎn)P為AB邊上的定點(diǎn),且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動(dòng)點(diǎn)E,當(dāng)?shù)闹凳嵌嗌贂r(shí),△PDE的周長(zhǎng)最小?如圖(3),點(diǎn)Q是邊AB上的定點(diǎn),且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F,連接CF,G為CF的中點(diǎn),M、N分別為線段QF和CD上的動(dòng)點(diǎn),且始終保持QM=CN,MN與DF相交于點(diǎn)H,請(qǐng)問GH的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.20.(8分)我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).然而,世界上第一次給出的勾股數(shù)公式,收集在我國(guó)古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時(shí),a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長(zhǎng)滿足上述勾股數(shù),其中一邊長(zhǎng)為37,且n=5,求該直角三角形另兩邊的長(zhǎng).21.(10分)解分式方程:x+1x-1-22.(10分)如圖所示,已知一次函數(shù)(k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)(m≠0)的圖象在第一象限交于C點(diǎn),CD垂直于x軸,垂足為D.若OA=OB=OD=1.(1)求點(diǎn)A、B、D的坐標(biāo);(2)求一次函數(shù)和反比例函數(shù)的解析式.23.(12分)如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.24.(14分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線y=x+3與x軸交于點(diǎn)D.(1)求拋物線的頂點(diǎn)C的坐標(biāo)及A,B兩點(diǎn)的坐標(biāo);(2)將拋物線y=x2﹣6x+9向上平移1個(gè)單位長(zhǎng)度,再向左平移t(t>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍;(3)點(diǎn)P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點(diǎn),當(dāng)△PAB的面積是△ABC面積的2倍時(shí),求m,n的值.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】

利用旋轉(zhuǎn)的性質(zhì)得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據(jù)平行線的性質(zhì)可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數(shù)不確定,所以不能判定BC⊥DE.【詳解】∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得△DBE,點(diǎn)C的對(duì)應(yīng)點(diǎn)E恰好落在AB的延長(zhǎng)線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當(dāng)∠E=30°時(shí),BC⊥DE.故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的性質(zhì).2、B【解析】試題分析:正方形ABCD繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)180°后,C點(diǎn)的對(duì)應(yīng)點(diǎn)與C一定關(guān)于A對(duì)稱,A是對(duì)稱點(diǎn)連線的中點(diǎn),據(jù)此即可求解.試題解析:AC=2,則正方形ABCD繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)180°后C的對(duì)應(yīng)點(diǎn)設(shè)是C′,則AC′=AC=2,則OC′=3,故C′的坐標(biāo)是(3,0).故選B.考點(diǎn):坐標(biāo)與圖形變化-旋轉(zhuǎn).3、C【解析】試題解析:觀察二次函數(shù)圖象可知:∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、四象限,反比例函數(shù)的圖象在第二、四象限.故選D.4、D【解析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系列出方程求解即可.【詳解】設(shè)方程的兩根分別為x1,x1,

∵x1+(k1-4)x+k-1=0的兩實(shí)數(shù)根互為相反數(shù),

∴x1+x1,=-(k1-4)=0,解得k=±1,

當(dāng)k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實(shí)數(shù)根,所以k=1舍去;

當(dāng)k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個(gè)不相等的實(shí)數(shù)根;

∴k=-1.

故選D.【點(diǎn)睛】本題考查的是根與系數(shù)的關(guān)系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時(shí),x1+x1=?,x1x1=,反過來也成立.5、D【解析】

把點(diǎn)P的橫坐標(biāo)減4,縱坐標(biāo)減3可得P1的坐標(biāo);讓點(diǎn)P的縱坐標(biāo)不變,橫坐標(biāo)為原料坐標(biāo)的相反數(shù)可得P2的坐標(biāo);讓點(diǎn)P的縱坐標(biāo)的相反數(shù)為P3的橫坐標(biāo),橫坐標(biāo)為P3的縱坐標(biāo)即可.【詳解】∵點(diǎn)P(3,4),將點(diǎn)P先向左平移4個(gè)單位,再向下平移3個(gè)單位得到點(diǎn)P1,∴P1的坐標(biāo)為(﹣1,1).∵點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)是P2,∴P2(﹣3,4).∵將點(diǎn)P繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)P3,∴P3(﹣4,3).故選D.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的變化;用到的知識(shí)點(diǎn)為:左右平移只改變點(diǎn)的橫坐標(biāo),左減右加,上下平移只改變點(diǎn)的縱坐標(biāo),上加下減;兩點(diǎn)關(guān)于y軸對(duì)稱,縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù);(a,b)繞原點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到的點(diǎn)的坐標(biāo)為(﹣b,a).6、A【解析】【分析】根據(jù)三視圖的知識(shí)使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長(zhǎng)方形,可排除C,故選A.【點(diǎn)睛】本題考查了由三視圖判斷幾何體的知識(shí),做此類題時(shí)可利用排除法解答.7、C【解析】

由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個(gè)三角形的面積比為4:1.故選C.【點(diǎn)睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.8、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點(diǎn):1、平行線的性質(zhì);2、圓周角定理;3等腰三角形的性質(zhì)9、D【解析】

求出不等式組的解集,根據(jù)已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數(shù)解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時(shí),b=9、10、11;當(dāng)a=4時(shí),b=9、10、11;所以適合這個(gè)不等式組的整數(shù)a、b組成的有序數(shù)對(duì)(a,b)共有6個(gè),故選:D.【點(diǎn)睛】本題考查了解一元一次不等式組,不等式組的整數(shù)解,有序?qū)崝?shù)對(duì)的應(yīng)用,解此題的根據(jù)是求出a、b的值.10、C【解析】

根據(jù)數(shù)軸上點(diǎn)的位置關(guān)系,可得a,b,c,d的大小,根據(jù)有理數(shù)的運(yùn)算,絕對(duì)值的性質(zhì),可得答案.【詳解】解:由數(shù)軸上點(diǎn)的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合題意;B、bd<0,故B不符合題意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合題意;D、b+c<0,故D不符合題意;故選:C.【點(diǎn)睛】本題考查了有理數(shù)大小的比較、有理數(shù)的運(yùn)算,絕對(duì)值的性質(zhì),熟練掌握相關(guān)的知識(shí)是解題的關(guān)鍵二、填空題(共7小題,每小題3分,滿分21分)11、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對(duì)應(yīng)的角平分線的比等于相似比,可知它們對(duì)應(yīng)的角平分線比是2:1.故答案為2:1.點(diǎn)睛:本題考查的是相似三角形的性質(zhì),即相似三角形對(duì)應(yīng)邊的比、對(duì)應(yīng)高線的比、對(duì)應(yīng)角平分線的比、周長(zhǎng)的比都等于相似比;面積的比等于相似比的平方.12、①②【解析】

根據(jù)折疊的性質(zhì)可知,結(jié)合垂徑定理、三角形的性質(zhì)、同圓或等圓中圓周角與圓心的性質(zhì)等可以判斷①②是否正確,EO的最小值問題是個(gè)難點(diǎn),這是一個(gè)動(dòng)點(diǎn)問題,只要把握住E在什么軌跡上運(yùn)動(dòng),便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.

由題知:沿著弦AB折疊,正好經(jīng)過圓心O

∴OF=OA=OB

∴∠AOF=∠BOF=60°

∴∠AOB=120°

∴∠ACB=120°(同弧所對(duì)圓周角相等)

∠D=∠AOB=60°(同弧所對(duì)的圓周角是圓心角的一半)

∴∠ACD=180°-∠ACB=60°

∴△ACD是等邊三角形(有兩個(gè)角是60°的三角形是等邊三角形)

故,①②正確

下面研究問題EO的最小值是否是1

如圖2,連接AE和EF

∵△ACD是等邊三角形,E是CD中點(diǎn)

∴AE⊥BD(三線合一)

又∵OF⊥AB

∴F是AB中點(diǎn)

即,EF是△ABE斜邊中線

∴AF=EF=BF

即,E點(diǎn)在以AB為直徑的圓上運(yùn)動(dòng).

所以,如圖3,當(dāng)E、O、F在同一直線時(shí),OE長(zhǎng)度最小

此時(shí),AE=EF,AE⊥EF

∵⊙O的半徑是2,即OA=2,OF=1

∴AF=(勾股定理)

∴OE=EF-OF=AF-OF=-1

所以,③不正確

綜上所述:①②正確,③不正確.

故答案是:①②.【點(diǎn)睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.也考查了垂徑定理.13、x<【解析】由題意得:1﹣2x>0,解得:,故答案為.14、5【解析】

本題先根據(jù)垂徑定理構(gòu)造出直角三角形,然后在直角三角形中已知弦長(zhǎng)和弓形高,根據(jù)勾股定理求出半徑,從而得解.【詳解】解:如圖,設(shè)圓心為O,弦為AB,切點(diǎn)為C.如圖所示.則AB=8cm,CD=2cm.

連接OC,交AB于D點(diǎn).連接OA.

∵尺的對(duì)邊平行,光盤與外邊緣相切,

∴OC⊥AB.

∴AD=4cm.

設(shè)半徑為Rcm,則R2=42+(R-2)2,

解得R=5,

∴該光盤的半徑是5cm.

故答案為5【點(diǎn)睛】此題考查了切線的性質(zhì)及垂徑定理,建立數(shù)學(xué)模型是關(guān)鍵.15、-1<X<2【解析】經(jīng)過點(diǎn)A,∴不等式x>kx+b>-2的解集為.16、①②③【解析】

由公交車在7至12分鐘時(shí)間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時(shí)間,進(jìn)而可知小剛上公交車的時(shí)間;由上公交車到他到達(dá)學(xué)校共用10分鐘以及公交車行駛時(shí)間可知小剛跑步時(shí)間,進(jìn)而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時(shí)間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時(shí),公交車行駛的距離為1200-400=800m,則公交車行駛的時(shí)間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時(shí)乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯(cuò)誤,再由圖可知小明跑步時(shí)間為300÷3=100米/分鐘,故③正確.故正確的序號(hào)是:①②③.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用.17、或x=-1【解析】

由點(diǎn)A的坐標(biāo)及AB的長(zhǎng)度可得出點(diǎn)B的坐標(biāo),由拋物線的對(duì)稱性可求出拋物線的對(duì)稱軸.【詳解】∵點(diǎn)A的坐標(biāo)為(-2,0),線段AB的長(zhǎng)為8,∴點(diǎn)B的坐標(biāo)為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),∴拋物線的對(duì)稱軸為直線x==2或x==-1.故答案為x=2或x=-1.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)以及二次函數(shù)的性質(zhì),由拋物線與x軸的交點(diǎn)坐標(biāo)找出拋物線的對(duì)稱軸是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)tan∠ADP=35【解析】

(1)根據(jù)線段垂直平分線的性質(zhì)和平行四邊形的性質(zhì)即可得到結(jié)論;(2)作PH⊥AD于H,根據(jù)四邊形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,從而得到PH=3,DH=5,然后利用銳角三角函數(shù)的定義求解即可.【詳解】(1)證明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四邊形ABEF是平行四邊形.∵AB=BE,∴四邊形ABEF是菱形;(2)解:作PH⊥AD于H,∵四邊形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=12AB∴PH=3,DH=5,∴tan∠ADP=PHDH=3【點(diǎn)睛】本題考查了菱形的判定及平行四邊形的性質(zhì),解題的關(guān)鍵是牢記菱形的幾個(gè)判定定理,難度不大.19、(1)證明見解析(2)(3)【解析】

(1)根據(jù)題中“完美矩形”的定義設(shè)出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)P′,連接DP′交BC于點(diǎn)E,此時(shí)△PDE的周長(zhǎng)最小,設(shè)AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對(duì)稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對(duì)應(yīng)邊相等得到FH=DH,再由G為CF中點(diǎn),得到HG為中位線,利用中位線性質(zhì)求出GH的長(zhǎng)即可.【詳解】(1)在圖1中,設(shè)AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)P′,連接DP′交BC于點(diǎn)E,此時(shí)△PDE的周長(zhǎng)最小,設(shè)AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵M(jìn)F∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點(diǎn),∴GH是△CFD的中位線,∴GH=CD=×2=.【點(diǎn)睛】此題屬于相似綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形中位線性質(zhì),平行線的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解本題的關(guān)鍵.20、(1)證明見解析;(2)當(dāng)n=5時(shí),一邊長(zhǎng)為37的直角三角形另兩邊的長(zhǎng)分別為12,1.【解析】

(1)根據(jù)題意只需要證明a2+b2=c2,即可解答(2)根據(jù)題意將n=5代入得到a=(m2﹣52),b=5m,c=(m2+25),再將直角三角形的一邊長(zhǎng)為37,分別分三種情況代入a=(m2﹣52),b=5m,c=(m2+25),即可解答【詳解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n為正整數(shù),∴a、b、c是一組勾股數(shù);(2)解:∵n=5∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一邊長(zhǎng)為37,∴分三種情況討論,①當(dāng)a=37時(shí),(m2﹣52)=37,解得m=±3(不合題意,舍去)②當(dāng)y=37時(shí),5m=37,解得m=(不合題意舍去);③當(dāng)z=37時(shí),37=(m2+n2),解得m=±7,∵m>n>0,m、n是互質(zhì)的奇數(shù),∴m=7,把m=7代入①②得,x=12,y=1.綜上所述:當(dāng)n=5時(shí),一邊長(zhǎng)為37的直角三角形另兩邊的長(zhǎng)分別為12,1.【點(diǎn)睛】此題考查了勾股數(shù)和勾股定理,熟練掌握勾股定理是解題關(guān)鍵21、方程無解【解析】

找出分式方程的最簡(jiǎn)公分母,去分母后轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,再代入最簡(jiǎn)公分母進(jìn)行檢驗(yàn)即可.【詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【點(diǎn)睛】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗(yàn)根.22、(1)A(-1,0),B(0,1),D(1,0)(2)一次函數(shù)的解析式為反比例函數(shù)的解析式為【解析】解:(1)∵OA=OB=OD=1,∴點(diǎn)A、B、D的坐標(biāo)分別為A(-1,0),B(0,1),D(1,0)。(2)∵點(diǎn)A、B在一次函數(shù)(k≠0)的圖象上,∴,解得。∴一次函數(shù)的解析式為。∵點(diǎn)C在一次函數(shù)y=x+1的圖象上,且CD⊥x軸,∴點(diǎn)C的坐標(biāo)為(1,2)。又∵點(diǎn)C在反比例函數(shù)(m≠0)的圖象上,∴m=1×2=2?!喾幢壤瘮?shù)的解析式為。(1)根據(jù)OA=OB=OD=1和各坐標(biāo)軸上的點(diǎn)的特點(diǎn)易得到所求點(diǎn)的坐標(biāo)。(2)將A、B兩點(diǎn)坐標(biāo)分別代入,可用待定系數(shù)法確定一次函數(shù)的解析式,由C點(diǎn)在一次函數(shù)的圖象上可確定C點(diǎn)坐標(biāo),將C點(diǎn)坐標(biāo)代入可確定反比例函數(shù)的解析式。23、(1)證明略(2)等腰三角形,理由略【解析】

證明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF為等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF為等腰三角形.24、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點(diǎn)式即可求出點(diǎn)C的坐標(biāo),聯(lián)立拋物線與直線的解析式即可求出A、B的坐標(biāo).(Ⅱ)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),然后求出直線AC的解析式后,將點(diǎn)E的坐標(biāo)分別代入直線AC與AD的解析式中即可求出t的值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論