




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市南長實驗教育集團2026屆中考聯考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知關于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.52.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣3.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.4.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC5.6的絕對值是()A.6 B.﹣6 C. D.6.截至2010年“費爾茲獎”得主中最年輕的8位數學家獲獎時的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數據的中位數是()A.28 B.29 C.30 D.317.如圖,⊙O內切于正方形ABCD,邊BC、DC上兩點M、N,且MN是⊙O的切線,當△AMN的面積為4時,則⊙O的半徑r是()A. B.2 C.2 D.48.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數關系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等9.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.10.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉得△EDC.當點B的對應點D恰好落在AC上時,∠CAE的度數是()A.30° B.40° C.50° D.60°二、填空題(本大題共6個小題,每小題3分,共18分)11.算術平方根等于本身的實數是__________.12.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.13.如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點,則下列結論:①△ADF≌△FEC;②四邊形ADEF為菱形;③.其中正確的結論是____________.(填寫所有正確結論的序號)14.將一些形狀相同的小五角星如圖所示的規(guī)律擺放,據此規(guī)律,第10個圖形有_______個五角星.15.方程的解是__________.16.正十二邊形每個內角的度數為.三、解答題(共8題,共72分)17.(8分)已知:AB為⊙O上一點,如圖,,,BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.(1)求CE的長;(2)延長CE到F,使,連結BF并延長BF交⊙O于點G,求BG的長;(3)在(2)的條件下,連結GC并延長GC交BH于點D,求證:18.(8分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.19.(8分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經市場調查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數量不少于B種樹木數量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.20.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內部時,猜想ED和EB數量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.21.(8分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.22.(10分)某企業(yè)信息部進行市場調研發(fā)現:信息一:如果單獨投資A種產品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數關系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數關系式;(2)從所學過的一次函數、二次函數、反比例函數中確定哪種函數能表示yA與x之間的關系,并求出yA與x的函數關系式;(3)如果企業(yè)同時對A、B兩種產品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?23.(12分)在“弘揚傳統文化,打造書香校園”活動中,學校計劃開展四項活動:“A-國學誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意思,隨機調查了部分學生,結果統計如下:(1)根據題中信息補全條形統計圖.(2)所抽取的學生參加其中一項活動的眾數是.(3)學?,F有800名學生,請根據圖中信息,估算全校學生希望參加活動A有多少人?24.已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.2、D【解析】
根據合并同類項、同底數冪的除法法則、分數指數運算法則、冪的乘方法則進行計算即可.【詳解】解:A:2a+3a=(2+3)a=5a,故A錯誤;B:x8÷x2=x8-2=x6,故B錯誤;C:=,故C錯誤;D:(-a-2)3=-a-6=-,故D正確.故選D.【點睛】本題考查了合并同類項、同底數冪的除法法則、分數指數運算法則、冪的乘方法則.其中指數為分數的情況在初中階段很少出現.3、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.4、C【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項ABD都一定成立.故選C.5、A【解析】試題分析:1是正數,絕對值是它本身1.故選A.考點:絕對值.6、C【解析】
根據中位數的定義即可解答.【詳解】解:把這些數從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個數的平均數是:=30,則這組數據的中位數是30;故本題答案為:C.【點睛】此題考查了中位數,中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數.7、C【解析】
連接,交于點設則根據△AMN的面積為4,列出方程求出的值,再計算半徑即可.【詳解】連接,交于點內切于正方形為的切線,經過點為等腰直角三角形,為的切線,設則△AMN的面積為4,則即解得故選:C.【點睛】考查圓的切線的性質,等腰直角三角形的性質,三角形的面積公式,綜合性比較強.8、B【解析】
①根據函數的圖象即可直接得出結論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結論.【詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數解析式為y=kx,5k=300,得k=60,即貨車對應的函數解析式為y=60x,設CD段轎車對應的函數解析式為y=ax+b,,得,即CD段轎車對應的函數解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【點睛】此題考查一次函數的應用,解題的關鍵在于利用題中信息列出函數解析式9、B【解析】
解:由折疊的性質可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質.10、C【解析】
由三角形內角和定理可得∠ACB=80°,由旋轉的性質可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉的性質,等腰三角形的性質,熟練運用旋轉的性質是本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、0或1【解析】根據負數沒有算術平方根,一個正數的算術平方根只有一個,1和0的算術平方根等于本身,即可得出答案.解:1和0的算術平方根等于本身.故答案為1和0“點睛”本題考查了算術平方根的知識,注意掌握1和0的算術平方根等于本身.12、4π【解析】根據扇形的面積公式可得:扇形AOB的面積為,故答案為4π.13、①②③【解析】
①根據三角形的中位線定理可得出AD=FE、AF=FC、DF=EC,進而可證出△ADF≌△FEC(SSS),結論①正確;②根據三角形中位線定理可得出EF∥AB、EF=AD,進而可證出四邊形ADEF為平行四邊形,由AB=AC結合D、F分別為AB、AC的中點可得出AD=AF,進而可得出四邊形ADEF為菱形,結論②正確;③根據三角形中位線定理可得出DF∥BC、DF=BC,進而可得出△ADF∽△ABC,再利用相似三角形的性質可得出,結論③正確.此題得解.【詳解】解:①∵D、E、F分別為AB、BC、AC的中點,∴DE、DF、EF為△ABC的中位線,∴AD=AB=FE,AF=AC=FC,DF=BC=EC.在△ADF和△FEC中,,∴△ADF≌△FEC(SSS),結論①正確;②∵E、F分別為BC、AC的中點,∴EF為△ABC的中位線,∴EF∥AB,EF=AB=AD,∴四邊形ADEF為平行四邊形.∵AB=AC,D、F分別為AB、AC的中點,∴AD=AF,∴四邊形ADEF為菱形,結論②正確;③∵D、F分別為AB、AC的中點,∴DF為△ABC的中位線,∴DF∥BC,DF=BC,∴△ADF∽△ABC,∴,結論③正確.故答案為①②③.【點睛】本題考查了菱形的判定與性質、全等三角形的判定與性質、相似三角形的判定與性質以及三角形中位線定理,逐一分析三條結論的正誤是解題的關鍵.14、1.【解析】尋找規(guī)律:不難發(fā)現,第1個圖形有3=22-1個小五角星;第2個圖形有8=32-1個小五角星;第3個圖形有15=42-1個小五角星;…第n個圖形有(n+1)2-1個小五角星.∴第10個圖形有112-1=1個小五角星.15、x=1【解析】
將方程兩邊平方后求解,注意檢驗.【詳解】將方程兩邊平方得x-3=4,移項得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本題答案為:x=1.【點睛】在解無理方程是最常用的方法是兩邊平方法及換元法,解得答案時一定要注意代入原方程檢驗.16、【解析】
首先求得每個外角的度數,然后根據外角與相鄰的內角互為鄰補角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數是:=30°,則每一個內角的度數是:180°﹣30°=150°.故答案為150°.三、解答題(共8題,共72分)17、(1)CE=4;(2)BG=8;(3)證明見解析.【解析】
(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;
(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;
(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【詳解】解:(1)∵BH與⊙O相切于點B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【點睛】本題考查的是切線的性質、相似三角形的判定和性質、勾股定理的應用,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.18、(1)見解析;(2).【解析】
(1)連接OC,根據等腰三角形的性質得到∠OCB=∠B,∠OCB=∠F,根據垂徑定理得到OF⊥BC,根據余角的性質得到∠OCF=90°,于是得到結論;
(2)過D作DH⊥AB于H,根據三角形的中位線的想知道的OD=AC,根據平行四邊形的性質得到DF=AC,設OD=x,得到AC=DF=2x,根據射影定理得到CD=x,求得BD=x,根據勾股定理得到AD=x,于是得到結論.【詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF為⊙O的切線;
(2)過D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四邊形ACFD是平行四邊形,
∴DF=AC,
設OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD?DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.【點睛】本題考查了切線的判定和性質,平行四邊形的性質,垂徑定理,射影定理,勾股定理,三角函數的定義,正確的作出輔助線是解題的關鍵.19、(1)A種樹每棵2元,B種樹每棵80元;(2)當購買A種樹木1棵,B種樹木25棵時,所需費用最少,最少為8550元.【解析】
(1)設A種樹每棵x元,B種樹每棵y元,根據“購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元”列出方程組并解答;(2)設購買A種樹木為x棵,則購買B種樹木為(2-x)棵,根據“購買A種樹木的數量不少于B種樹木數量的3倍”列出不等式并求得x的取值范圍,結合實際付款總金額=0.9(A種樹的金額+B種樹的金額)進行解答.【詳解】解:(1)設A種樹木每棵x元,B種樹木每棵y元,根據題意,得,解得,答:A種樹木每棵2元,B種樹木每棵80元.(2)設購買A種樹木x棵,則B種樹木(2-x)棵,則x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.設實際付款總額是y元,則y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y隨x增大而增大,∴當x=1時,y最小為18×1+73=8550(元).答:當購買A種樹木1棵,B種樹木25棵時,所需費用最少,為8550元.20、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】
(1)、根據等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.21、(1)證明見解析(2)BC=【解析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質.22、(1)yB=-0.2x2+1.6x(2)一次函數,yA=0.4x(3)該企業(yè)投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元【解析】
(1)用待定系數法將坐標(2,2.4)(4,3.2)代入函數關系式yB=ax2+bx求解即可;(2)根據表格中對應的關系可以確定為一次函數,通過待定系數法求得函數表達式;(3)根據等量關系“總利潤=投資A產品所獲利潤+投資B產品所獲利潤”列出函數關系式求得最大值【詳解】解:(1)yB=-0.2x2+1.6x,(2)一次函數,yA=0.4x,(3)設投資B產品x萬元,投資A產品(15-x)萬元,投資兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年IPHONE手機項目規(guī)劃申請報告范文
- 環(huán)境保護設備檢修義務承諾書(5篇)
- 2025內蒙古鄂爾多斯市水發(fā)燃氣有限公司招聘6人考前自測高頻考點模擬試題及一套完整答案詳解
- 2025江蘇常州市鐘樓金隆控股集團有限公司招聘第一批人員模擬試卷及完整答案詳解一套
- 2025-2026學年浙江省名校協作體高三上學期返校聯考英語試題(解析版)
- 客戶建議迅速回應承諾函5篇
- 山東省東營市2024-2025學年高一下學期期末考試地理試題(解析版)
- 遼寧省沈陽市某中學2025-2026學年高一上學期開學地理試題(解析版)
- 童話森林里的友情故事(15篇)
- 2025廣東中山市橫欄鎮(zhèn)紀檢監(jiān)察辦公室招聘1人考前自測高頻考點模擬試題及一套答案詳解
- 外聘電工安全協議書范本
- 自然地理學 第七章學習資料
- 風力發(fā)電機組偏航系統(風電機組課件)
- 保密知識課件下載
- 典型故障波形分析(電力系統故障分析課件)
- 2025監(jiān)理工程師教材水利
- 江蘇高中英語牛津譯林版新教材必修一詞匯(默寫版)
- 人教版六年級上冊數學期中考試試卷完整版
- 2025-2030年中國電力配網自動化市場現狀調研及投資發(fā)展預測報告
- 土石方運輸合同協議
- 醫(yī)療設備與工業(yè)互聯網的整合運營模式
評論
0/150
提交評論