江蘇省無錫市梁溪區(qū)2026屆中考數(shù)學考前最后一卷含解析_第1頁
江蘇省無錫市梁溪區(qū)2026屆中考數(shù)學考前最后一卷含解析_第2頁
江蘇省無錫市梁溪區(qū)2026屆中考數(shù)學考前最后一卷含解析_第3頁
江蘇省無錫市梁溪區(qū)2026屆中考數(shù)學考前最后一卷含解析_第4頁
江蘇省無錫市梁溪區(qū)2026屆中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省無錫市梁溪區(qū)2026屆中考數(shù)學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某校在國學文化進校園活動中,隨機統(tǒng)計50名學生一周的課外閱讀時間如表所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()學生數(shù)(人)5814194時間(小時)678910A.14,9 B.9,9 C.9,8 D.8,92.如圖,二次函數(shù)的圖象開口向下,且經(jīng)過第三象限的點若點P的橫坐標為,則一次函數(shù)的圖象大致是A. B. C. D.3.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數(shù),固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數(shù)字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數(shù)據(jù),并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:轉盤總次數(shù)10203050100150180240330450“和為7”出現(xiàn)頻數(shù)27101630465981110150“和為7”出現(xiàn)頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.354.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.5.下列運算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4 C. D.(a2b)3=a5b36.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.7.撫順市中小學機器人科技大賽中,有7名學生參加決賽,他們決賽的成績各不相同,其中一名參賽選手想知道自己能否進入前4名,他除了知道自己成績外還要知道這7名學生成績的()A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差8.下列分式中,最簡分式是()A. B. C. D.9.如圖,空心圓柱體的左視圖是()A. B. C. D.10.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.11.我國古代數(shù)學著作《九章算術》中,將底面是直角三角形,且側棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個小正方形的邊長均為1),則該“塹堵”的側面積為()A.16+16 B.16+8 C.24+16 D.4+412.如圖,夜晚,小亮從點A經(jīng)過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關系的圖象大致為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.為響應“書香成都”建設的號召,在全校形成良好的人文閱讀風尚,成都市某中學隨機調查了部分學生平均每天的閱讀時間,統(tǒng)計結果如圖所示,則在本次調查中,閱讀時間的中位數(shù)是________小時.14.二次函數(shù)的圖象與x軸有____個交點

.15.計算=________.16.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.17.如圖,甲、乙兩船同時從港口出發(fā),甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結果保留根號).18.如圖,折疊長方形紙片ABCD,先折出對角線BD,再將AD折疊到BD上,得到折痕DE,點A的對應點是點F,若AB=8,BC=6,則AE的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結分析報告》中稱:山西春節(jié)旅游供需兩旺,實現(xiàn)了“旅游接待”與“經(jīng)濟效益”的雙豐收,請根據(jù)圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關,達到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個重點景區(qū)每日接待游客數(shù)量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數(shù)量(萬人次)7.5682.83119.5184.38103.2151.55這組數(shù)據(jù)的中位數(shù)是萬人次.(3)根據(jù)圖2中的信息預估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術”、“國粹京劇”、“陶瓷藝術”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率.20.(6分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?21.(6分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.22.(8分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.23.(8分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.24.(10分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設運動時間為ts,解答下列問題:(發(fā)現(xiàn))(1)的長度為多少;(2)當t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當⊙P和△ABO的邊所在的直線相切時,求點P的坐標.(拓展)當與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.25.(10分)如圖,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).26.(12分)如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx-k的圖象的交點坐標為A(m,2).(1)求m的值和一次函數(shù)的解析式;(2)設一次函數(shù)y=kx-k的圖象與y軸交于點B,求△AOB的面積;(3)直接寫出使函數(shù)y=kx-k的值大于函數(shù)y=x的值的自變量x的取值范圍.27.(12分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

解:觀察、分析表格中的數(shù)據(jù)可得:∵課外閱讀時間為1小時的人數(shù)最多為11人,∴眾數(shù)為1.∵將這組數(shù)據(jù)按照從小到大的順序排列,第25個和第26個數(shù)據(jù)的均為2,∴中位數(shù)為2.故選C.【點睛】本題考查(1)眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);(2)中位數(shù)的確定要分兩種情況:①當數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為奇數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的那個數(shù)就是中位數(shù);②當數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為偶數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).2、D【解析】【分析】根據(jù)二次函數(shù)的圖象可以判斷a、b、的正負情況,從而可以得到一次函數(shù)經(jīng)過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數(shù)的圖象可知,,,當時,,的圖象經(jīng)過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數(shù)的圖象與性質、一次函數(shù)的圖象與性質,認真識圖,會用函數(shù)的思想、數(shù)形結合思想解答問題是關鍵.3、A【解析】

根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)“和為7”的概率即可.【詳解】由表中數(shù)據(jù)可知,出現(xiàn)“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.4、D【解析】

根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,

系數(shù)化為1,得:x<2,

故選D.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.5、B【解析】

根據(jù)同底數(shù)冪的除法,合并同類項,積的乘方的運算法則進行逐一運算即可.【詳解】解:A、5ab﹣=4ab,此選項運算錯誤,B、a6÷a2=a4,此選項運算正確,C、,選項運算錯誤,D、(a2b)3=a6b3,此選項運算錯誤,故選B.【點睛】此題考查了同底數(shù)冪的除法,合并同類項,積的乘方,熟練掌握運算法則是解本題的關鍵.6、A【解析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉點,就叫做對稱中心.7、A【解析】

7人成績的中位數(shù)是第4名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有7個人,且他們的分數(shù)互不相同,第4的成績是中位數(shù),要判斷是否進入前4名,故應知道中位數(shù)的多少,故選A.【點睛】本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義,熟練掌握相關的定義是解題的關鍵.8、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.9、C【解析】

根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.10、D【解析】試題分析:根據(jù)中心對稱圖形的定義,結合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.11、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側面,另外兩個側面全等,是長×高=×4=,所以側面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側面積,畫出該圖的立體圖形是解決本題的關鍵.12、A【解析】設身高GE=h,CF=l,AF=a,當x≤a時,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長將隨著離燈光越來越近而越來越短,到燈下的時候,將是一個點,進而隨著離燈光的越來越遠而影長將變大.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】由統(tǒng)計圖可知共有:8+19+10+3=40人,中位數(shù)應為第20與第21個的平均數(shù),而第20個數(shù)和第21個數(shù)都是1(小時),則中位數(shù)是1小時.故答案為1.14、2【解析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號進行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的個數(shù).【詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的縱坐標是零,即當y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【點睛】本題考查了拋物線與x軸的交點.二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.15、1【解析】試題解析:3-2=1.16、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質可得,即可得AC2=CD?BC=4×8=32,解得AC=4.17、10海里.【解析】

本題可以求出甲船行進的距離AC,根據(jù)三角函數(shù)就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點睛】本題主要考查的是解直角三角形的應用-方向角問題及三角函數(shù)的定義,理解方向角的定義是解決本題的關鍵.18、3【解析】

先利用勾股定理求出BD,再求出DF、BF,設AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解決問題.【詳解】∵四邊形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.設AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案為:3.【點睛】本題考查了矩形的性質、勾股定理等知識,解題時,我們常常設要求的線段長為x,然后根據(jù)折疊和軸對稱的性質用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切危\用勾股定理列出方程求出答案.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1365.45、414.4(2)93.79(3)30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%(4)【解析】

(1)由圖1可得答案;(2)根據(jù)中位數(shù)的定義求解可得;(3)由近3年平均漲幅在30%左右即可做出估計;(4)根據(jù)題意先畫出樹狀圖,得出共有12種等可能的結果數(shù),再利用概率公式求解可得.【詳解】(1)2018年首次突破了“千萬”大關,達到1365.45萬人次,比2017年春節(jié)假日增加1365.45﹣951.05=414.4萬人次.故答案為:1365.45、414.4;(2)這組數(shù)據(jù)的中位數(shù)是=93.79萬人次,故答案為:93.79;(3)2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為30%,理由是:近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%,故答案為:30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%.(4)畫樹狀圖如下:則共有12種等可能的結果數(shù),其中送給好朋友的兩枚書簽中恰好有“剪紙藝術”的結果數(shù)為6,所以送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率,也考查了條形統(tǒng)計圖與樣本估計總體.20、(1)不會穿過森林保護區(qū).理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區(qū),也就是求C到MN的距離.要構造直角三角形,再解直角三角形;(2)根據(jù)題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區(qū).(2)設原計劃完成這項工程需要y天,則實際完成工程需要y-5根據(jù)題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.21、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點P作PG⊥EF于G,解直角三角形即可得到結論;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,

∴AM=AP?cos30°=3,同理AN=3,

∴AE+AF=(AM-EM)+(AN+NF)=6.【點睛】運用了菱形的性質,解直角三角形,全等三角形的判定和性質,最值問題,等腰三角形的性質,作輔助線構造直角三角形是解題的關鍵.22、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關系為AG=BE;(3)3【解析】

(1)①由、結合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設,知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉性質知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點睛】本題考查了正方形的性質與判定,相似三角形的判定與性質等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質、相似三角形的判定與性質是解題的關鍵.23、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.24、【發(fā)現(xiàn)】(3)的長度為;(2)重疊部分的面積為;【探究】:點P的坐標為;或或;【拓展】t的取值范圍是或,理由見解析.【解析】

發(fā)現(xiàn):(3)先確定出扇形半徑,進而用弧長公式即可得出結論;(2)先求出PA=3,進而求出PQ,即可用面積公式得出結論;探究:分圓和直線AB和直線OB相切,利用三角函數(shù)即可得出結論;拓展:先找出和直角三角形的兩邊有兩個交點時的分界點,即可得出結論.【詳解】[發(fā)現(xiàn)](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的長度為.故答案為;(2)設⊙P半徑為r,則有r=2﹣3=3,當t=2時,如圖3,點N與點A重合,∴PA=r=3,設MP與AB相交于點Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重疊部分=S△APQPQ×AQ.即重疊部分的面積為.[探究]①如圖2,當⊙P與直線AB相切于點C時,連接PC,則有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴點P的坐標為(3,0);②如圖3,當⊙P與直線OB相切于點D時,連接PD,則有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴點P的坐標為(,0);③如圖2,當⊙P與直線OB相切于點E時,連接PE,則有PE⊥OB,同②可得:OP;∴點P的坐標為(,0);[拓展]t的取值范圍是2<t≤3,2≤t<4,理由:如圖4,當點N運動到與點A重合時,與Rt△ABO的邊有一個公共點,此時t=2;當t>2,直到⊙P運動到與AB相切時,由探究①得:OP=3,∴t3,與Rt△ABO的邊有兩個公共點,∴2<t≤3.如圖6,當⊙P運動到PM與OB重合時,與Rt△ABO的邊有兩個公共點,此時t=2;直到⊙P運動到點N與點O重合時,與Rt△ABO的邊有一個公共點,此時t=4;∴2≤t<4,即:t的取值范圍是2<t≤3,2≤t<4.【點睛】本題是圓的綜合題,主要考查了弧長公式,切線的性質,銳角三角函數(shù),三角形面積公式,作出圖形是解答本題的關鍵.25、(1)作圖見解析(2)∠BDC=72°【解析】解:(1)作圖如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論