




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第=page1717頁,共=sectionpages1717頁2025年陜西省西安市碑林區(qū)中考數(shù)學八模試卷一、選擇題:本題共8小題,每小題3分,共24分。在每小題給出的選項中,只有一項是符合題目要求的。1.如果以西安鐘樓為中心,小李向東走5m,所在的位置記作+5,那么小紅以西安鐘樓為中心,向西走7m,所在的位置應記作(
)A.-2 B.+2 C.+7 D.2.5G與AI時代已經(jīng)來臨,科技全面融入日常生活,推動社會各領域智能化變革,深刻改變?nèi)藗兊纳钆c工作方式.下列設計的人工智能圖標中,不是軸對稱圖形的是(
)A. B.
C. D.3.國家超級計算深圳中心(深圳云計算中心)主機系統(tǒng)由中國科學院計算技術研究所研制,其運算速度達每秒1271萬億次.數(shù)據(jù)“1271萬”用科學記數(shù)法表示為(
)A.1.271×108 B.1.271×1074.將兩把含有30°的三角尺按如圖所示的方式拼接在一起,則∠CGF的度數(shù)為(
)A.45°
B.30°
C.60°5.如圖,菱形ABCD的對角線AC,BD交于點E(AE<BE),F(xiàn)為BC的中點,連接EF.A.3
B.5
C.6
D.76.在平面直角坐標系中,直線l:y=2x+2與x軸負半軸交于點A,與y軸交于點B.將直線l向右平移m個單位長度后,直線l與x軸正半軸交于點C,且AC=OBA.1 B.2 C.3 D.47.如圖,在矩形ABCD中,AD=10,AB=6,E為CD的中點,過點C作射線CF,使∠DCF=45°,延長AE交CF于點F,則CF
A.30132 B.6013 C.8.拋物線y=x2+bx+2交x軸于點A,B,頂點為C.若AB=4,連接A.1 B.43 C.32 二、填空題:本題共5小題,每小題3分,共15分。9.比較大?。?______
2.10.若xm=3,xn=7,則x11.如圖,A,B為⊙O上的兩點,OC⊥AB,且AB=8,延長射線OC交⊙O于點M.若CM=312.如圖,矩形ABCO的頂點A,C分別在y軸、x軸上,點A(0,4),C(6,0),D是矩形ABCO對角線的交點,雙曲線y=kx在如圖所示的位置上.請寫出一個符合要求的雙曲線的表達式13.如圖,有一個邊長為4的正方形ABCD,E是射線BC上一動點,連接AE,P是線段AE上一動點,連接PD,且滿足AP?AE=16,則PD的最小值是______.三、解答題:本題共13小題,共81分。解答應寫出文字說明,證明過程或演算步驟。14.(本小題5分)
計算:(1315.(本小題5分)
求不等式:2(x-16.(本小題5分)
先化簡:x2-2x+1x2-1÷17.(本小題5分)
如圖,在△ABC中,用圓規(guī)和無刻度直尺在AB上方作∠PBA=118.(本小題5分)
如圖,在△ACE中,∠ACE=∠AEC,AB=19.(本小題5分)
某小區(qū)有一塊長為18米,寬為6米的矩形空地,計劃在空地中修兩塊相同的矩形綠地,它們的面積之和為60m220.(本小題5分)
為了加深對物質(zhì)性質(zhì)的認識,興趣小組設計了一個轉(zhuǎn)盤游戲.如圖,轉(zhuǎn)盤被均分成三等分,轉(zhuǎn)盤1中有三種物質(zhì),分別為A.干冰(固態(tài)二氧化碳)、B.冰、C.水銀;轉(zhuǎn)盤2中有三種物質(zhì),分別為D.二氧化碳、E.蒸餾水、F.銀.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤1,指針指向的物質(zhì)為金屬的概率為______.
(2)小明和小蕾同時分別轉(zhuǎn)動轉(zhuǎn)盤1和轉(zhuǎn)盤2,將兩個轉(zhuǎn)盤指針停下時所指的物質(zhì)放在一個順容器內(nèi)混合,混21.(本小題6分)
某校在周末去陜北研學的過程中前往了紅堿淖景區(qū),景區(qū)的大門口豎立著一座精致的王昭君雕像.興趣小組想通過學習用具和學習過的知識測量出王昭君雕像的高度,興趣小組的測量方案和數(shù)據(jù)如下表所示.活動項目測量王昭君雕像的高度方案示意圖實施過程1.已知AB⊥BC,CD⊥BC.
2.成員站在點C,用半圓儀測出測量數(shù)據(jù)仰角度數(shù)37°;BC=23.2m參考數(shù)據(jù)sin37°≈35,請根據(jù)以上測量方案,計算王昭君雕像AB的高度.22.(本小題7分)
某DeepSeek致力于開發(fā)先進的大語言模型(LLM)和相關技術,推動人工智能技術的普惠化與落地應用,該公司開發(fā)的AI大模型更是風靡全球.據(jù)悉,DeepSeek訓練一個AI模型時,初始數(shù)據(jù)量為2000條,每增加100條數(shù)據(jù),訓練時間延長3分鐘.設數(shù)據(jù)總量為x(x>2000)條,訓練時間為y分鐘.
(1)求y關于x的函數(shù)表達式.
(2)若訓練的總時間為23.(本小題7分)
某校開展了多種形式的黨史知識講座,并舉行了由七年級學生參加的黨史知識競賽,競賽共10道題,每題10分.現(xiàn)分別從七年級(1)、(2)班中各隨機抽取10名同學的成績(單位:分),收集整理,分析數(shù)據(jù)如下.班級平均數(shù)中位數(shù)眾數(shù)(1)班abc(2)班838590請根據(jù)以上信息,解答下列問題.
(1)填空:a=______,b=______,c=______.
(2)比較這兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由(一條理由即可).
(3)為了讓學生重視黨史知識的學習,學校將給競賽成績90分以上(含90分)的同學頒發(fā)紀念禮品,該校七年級共有學生600人,需要準備多少24.(本小題8分)
如圖,AB為⊙O的直徑,點F,C分別位于直徑AB的兩側(cè),連接BC,CF,OF,CF與OB相交于點E,AD//OF,交CF的延長線于點D,∠BCF=45°.
(1)求證:AD是⊙O的切線.
(2)若25.(本小題8分)
某鄉(xiāng)間民宿的院子里安裝了一個噴泉裝置,噴泉底座安裝在點O處,噴泉的出水口為點B,且OB=2m.如圖,這是噴泉噴水時的截面示意圖,根據(jù)實際情況調(diào)整噴泉落地點A,使點A到底座O的距離為4m.以過點O并垂直于地面的直線為y軸,OA所在直線為x軸,建立平面直角坐標系xOy,噴泉在y軸兩側(cè)的水流最高點C與C'之間的距離為3m,噴泉水流近似拋物線.
(1)求點C所在拋物線的函數(shù)表達式.
(2)現(xiàn)打算在噴泉內(nèi)側(cè)增加圓形花架作為點綴,花架的直徑為26.(本小題10分)
問題提出
(1)如圖1,在△ABC中,∠A=90°,AB=6,BC=10,點D在邊AB上,過點D作直線l⊥BC,點B與點E關于直線l對稱,作CE的垂直平分線m交AC于點F,連接DF.若BD=4,則△ADF的面積為______.
問題解決
(2)如圖2,在△ABC中,∠A=45°,小明想在△ABC內(nèi)找一點D,使得點D到A,B,C三點的距離相等,小明進行了2次折疊操作.
第1次:沿著直線m翻折,使得點B與點C重合,展開后,標記折痕m與BC交于點E;
第2次:沿著過點E的直線n翻折,使得點C落在直線m上,點答案和解析1.【答案】D
【解析】解:如果以西安鐘樓為中心,小李向東走5m,所在的位置記作+5,
那么小紅以西安鐘樓為中心,向西走7m,所在的位置應記作-7,
故選:D.
2.【解析】解:A,B,C是軸對稱圖形,
D不是軸對稱圖形,
故選:D.3.【答案】B
【解析】解:1271萬=12710000=1.271×107.
故選:B.
【解析】解:根據(jù)題意得∠ABC=∠DEF=90°,∠DFE=30°,
∴∠FDE=60°,
∴∠BGD【解析】解:∵四邊形ABCD是菱形,
∴AB=AD=CD=BC,AC⊥BD,
∴∠BEC=90°,
∵F為BC的中點,
∴EF=12BC,
∴EF=BF=FC,
∴△ABD、△【解析】解:∵直線l:y=2x+2與x軸負半軸交于點A,與y軸交于點B,
∴可求得A點坐標為(-1,0),B點坐標為(0,2),
∵AC=OB,
∴|AC|=2,
∴C點坐標為(1,0),
∵將直線l向右平移m個單位長度過C點,
將C點坐標代入7.【答案】A
【解析】解:過點F作FH⊥CD于點H,如圖所示:
∵四邊形ABCD是矩形,且AD=10,AB=6,
∴CD=AB=6,∠D=90°,
∴AD⊥CD,
∵點E是CD的中點,
∴DE=CE=12CD=3,
∴∠DCF=45°,F(xiàn)H⊥CD,
∴△CFH是等腰直角三角形,
∴設CH=FH=a,
∴HE=CE8.【答案】D
【解析】解:過點C作CD⊥AB于點D,設點A在點B的左側(cè),點A(x1,0),點B(x2,0),
∴x1+x2=-b,x1x2=2,
∵AB=4,
∴x2-x9.【答案】>
【解析】解:∵2=4,
∴7>2,
故答案為:【解析】解:∵xm=3,xn=7,
∴xm+n=xm【解析】解:連接OA,
∵OC⊥AB
∴AC=12AB=4,
由條件可知OA=OM=4OC
∵OC⊥AB
∴OA212.【答案】y=15x,答案【解析】解:∵矩形ABCO的頂點A,C分別在y軸、x軸上,點A(0,4),C(6,0),D是矩形ABCO對角線的交點,
∴B(6,4),D(3,2),
當雙曲線y=kx過點D時,k=6,
當雙曲線y=kx過點b時,k=24,
由雙曲線y=kx的位置可知6<k<24【解析】解:設AB的中點為O,以AB為直徑作⊙O,連接BP,OP,如圖所示:
∵四邊形ABCD為正方形,且邊長為4,
∴AB=AD=4,∠ABC=∠BAD=90°,
∵點O是AB的中點,
∴OA=OB=12AB=2,
在Rt△AOD中,由勾股定理得:OD=AD2+OA2=42+22=25,
∵AP?AE=16,
∴AP?AE=AB2,
14.【答案】10.
【解析】解:(13)-2+sin45°+|【解析】解:2(x-1)>3x-1,
去括號得:2x-2>3x-1,
移項得:2x-3x>-1+2【解析】解:原式=(x-1)2(x+1)(x-1)÷(x+1x+1-1x+1)
=x-1x+1÷xx+1=x-1x+1?x+1x
=x-1x,
∵18.【解析】證明:∵∠ACE=∠AEC,
∴AC=AE,
在△BAC與△DEA中,
BA=DE,∠BAC=∠DEA,AC=EA,
∴△BAC≌△DEA(SAS),
∴∠BCA=∠DAE,
∴BC//AE.
19.20.【解析】(1)轉(zhuǎn)動轉(zhuǎn)盤1,指針指向干冰,冰、水銀的可能性相同,其中只有水銀是金屬,
∴指針指向的物質(zhì)為金屬的概率為13;
(2)小蕾小明ABCD(((E(((F(((一共有有9種等可能情況,其中混合后結(jié)果為純凈物的情況有兩種(A,D)(21.【解析】解:過點D作DH⊥AB于點H,
∵AB⊥BC,CD⊥BC,
∴∠ABC=∠DCB=∠BHD=90°,
∴四邊形BCDH為矩形,
∴BH=CD=1.2m,DH=22.【解析】(1)y=x-2000100×3=3100x-60,
∴y關于x的函數(shù)表達式為y=3100x-60(x>2000).
(2)當y=48時,得3100x-60=48,
解得x=3600.
答:使用的數(shù)據(jù)總量為3600條.
23.【解析】(1)七年級(1)班10名同學的成績分別為:70,80,80,80,80,80,80,90,90,100,
故七年級(1)班的平均數(shù)為:70+80×6+90×2+10010=83(分),即a=83;中位數(shù)為80+802=80分,即b=80;眾數(shù)為80分,即c=80.
故答案為:83,80,80;
(2)七年級(2)班的成績比較好,理由如下:
隨機抽取的樣本中,兩個班樣本成績的平均數(shù)都為83,但(2)班成績的中位數(shù)大于(1)班成績的中位數(shù),且(2)班成績的眾數(shù)大于(1)班成績的眾數(shù),所以七年級(2)班的成績比較好.(答案不唯一);
(3)2+1+4+120×600=240(人)
答:需要準備大約240份紀念禮品.
24.【解析】(1)證明:∵BF=BF,∠BCF=45°,
∴∠BOF=2∠BCF=90°,
∵OF//AD,
∴∠OAD=∠BOF=90°,
∴AO⊥AD,
∵AO為⊙O的半徑,
∴AD是⊙O25.【解析】(1)由題意,得CC'=3m,
∴點C所在拋物線的對稱軸為直線x=32,
∵OB=2m,OA=4m,
∴點B的坐標為(0,2),點A的坐標為(4,0),
設點C所在拋物線的函數(shù)表達式為y=ax2+bx+c,
根據(jù)題意得:-b2a=32c=216a+4b+c=0,
解得a=-12b=32c=2,
∴點C所在拋物線的函數(shù)表達式為y=-12x2+32x+2;
(2)∵花架的直徑為1m,且拋物線的對稱軸為直線x=32,
∴當x=32-12=1時,y=-12×12+32×1+2=3,
∵噴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年檢驗科生物安全考試題及答案
- 經(jīng)濟基礎中級高頻考點
- 智能倉儲系統(tǒng)開發(fā)與應用服務協(xié)議
- 特色農(nóng)產(chǎn)品銷售與供應保障協(xié)議
- 經(jīng)濟法勞動合同重點高頻考點總結(jié)
- 多彩的活動作文范本(14篇)
- 我發(fā)現(xiàn)了交談的重要400字(7篇)
- 2025年黑龍江貨運從業(yè)考試試題題庫大全
- 那些年追過的夢想(11篇)
- 收獲作文七年級600字(10篇)
- 三方商鋪轉(zhuǎn)租協(xié)議書
- 自然災害信息員業(yè)務知識考核試題
- 六個盒子組織診斷工具理解與實踐課件
- 房產(chǎn)租賃合同文本與房產(chǎn)租賃合同模板
- 全玻幕墻的設計與計算
- 國際貿(mào)易技能大賽題庫
- von frey絲K值表完整版
- 出納日記賬模板
- GB/T 8183-2007鈮及鈮合金無縫管
- GB/T 3049-2006工業(yè)用化工產(chǎn)品鐵含量測定的通用方法1,10-菲啰啉分光光度法
- 基于PLC的十字路口交通燈控制系統(tǒng)設計與調(diào)試課件概要
評論
0/150
提交評論