求解數(shù)列高三題目及答案_第1頁
求解數(shù)列高三題目及答案_第2頁
求解數(shù)列高三題目及答案_第3頁
求解數(shù)列高三題目及答案_第4頁
求解數(shù)列高三題目及答案_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

求解數(shù)列高三題目及答案

單項選擇題(每題2分,共10題)1.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{3}=6\),則公差\(d\)為()A.1B.2C.3D.42.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{2}=2\),則公比\(q\)是()A.1B.2C.3D.43.數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=3n-1\),則\(a_{5}\)的值為()A.14B.15C.16D.174.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}\),則\(a_{2}\)等于()A.1B.3C.5D.75.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=4\),\(a_{5}=16\),則\(a_{4}\)為()A.8B.-8C.±8D.106.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=a_{n}+2\),\(a_{1}=1\),則\(a_{4}\)為()A.5B.7C.9D.117.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{3}=8\),\(a_{2}=4\),則\(a_{5}\)為()A.8B.10C.12D.148.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{4}=8\),則\(a_{2}\)是()A.2B.-2C.±2D.49.數(shù)列\(zhòng)(\{a_{n}\}\)的通項\(a_{n}=\frac{1}{n(n+1)}\),則\(a_{3}\)的值為()A.\(\frac{1}{6}\)B.\(\frac{1}{12}\)C.\(\frac{1}{20}\)D.\(\frac{1}{30}\)10.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n}=2n+1\),則\(a_{1}\)與公差\(d\)分別是()A.3,2B.2,3C.3,3D.2,2多項選擇題(每題2分,共10題)1.下列數(shù)列中,是等差數(shù)列的有()A.\(1,3,5,7,\cdots\)B.\(2,4,8,16,\cdots\)C.\(5,5,5,5,\cdots\)D.\(1,\frac{3}{2},2,\frac{5}{2},\cdots\)2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,公比\(q\gt1\),則()A.\(a_{2}\gta_{1}\)B.\(a_{3}\gta_{2}\)C.數(shù)列遞增D.\(a_{1}a_{3}\gta_{2}^{2}\)3.對于數(shù)列\(zhòng)(\{a_{n}\}\),其前\(n\)項和\(S_{n}=n^{2}-n\),則()A.\(a_{1}=0\)B.\(a_{2}=2\)C.數(shù)列是等差數(shù)列D.\(a_{n}=2n-2\)4.以下關(guān)于等差數(shù)列性質(zhì)正確的有()A.若\(m+n=p+q\),則\(a_{m}+a_{n}=a_{p}+a_{q}\)B.\(S_{n}\),\(S_{2n}-S_{n}\),\(S_{3n}-S_{2n}\)成等差數(shù)列C.公差\(d\gt0\)時,數(shù)列遞增D.奇數(shù)項與偶數(shù)項分別成等差數(shù)列5.等比數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{3}=4\),則()A.\(q=2\)B.\(q=-2\)C.\(a_{2}=2\)D.\(a_{2}=-2\)6.數(shù)列\(zhòng)(\{a_{n}\}\)通項\(a_{n}=2^{n}\),則()A.是等比數(shù)列B.\(a_{3}=8\)C.前\(n\)項和\(S_{n}=2^{n+1}-2\)D.\(a_{n+1}-a_{n}=2^{n}\)7.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=3n^{2}+2n\),則()A.\(a_{1}=5\)B.公差\(d=6\)C.\(a_{n}=6n-1\)D.\(S_{2}=16\)8.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n}\gt0\),\(a_{2}a_{4}=16\),則()A.\(a_{3}=4\)B.\(a_{1}a_{5}=16\)C.\(a_{3}^{2}=a_{2}a_{4}\)D.\(a_{4}=8\)9.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=3\),\(a_{1}=1\),則()A.是等差數(shù)列B.\(a_{2}=4\)C.\(a_{n}=3n-2\)D.前\(n\)項和\(S_{n}=\frac{n(3n-1)}{2}\)10.以下數(shù)列中,通項公式可以為\(a_{n}=n^{2}\)的有()A.\(1,4,9,16,\cdots\)B.\(0,1,4,9,\cdots\)C.\(1,9,25,49,\cdots\)D.\(4,9,16,25,\cdots\)判斷題(每題2分,共10題)1.常數(shù)列一定是等差數(shù)列。()2.等比數(shù)列的公比可以為\(0\)。()3.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}\),則\(a_{n}=2n-1\)。()4.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}\lt0\),\(d\gt0\),則數(shù)列遞增。()5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(q=-1\),則\(a_{n}=(-1)^{n-1}\)。()6.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=2a_{n}\),則是等比數(shù)列。()7.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}\)一定是關(guān)于\(n\)的二次函數(shù)。()8.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}a_{6}=a_{4}^{2}\)。()9.若數(shù)列\(zhòng)(\{a_{n}\}\)的通項\(a_{n}=n+\frac{1}{n}\),則\(a_{n}\)是等差數(shù)列。()10.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{3}=4\),則\(a_{2}=2\)。()簡答題(每題5分,共4題)1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=3\),\(d=2\),求\(a_{n}\)與\(S_{n}\)。-答案:\(a_{n}=a_{1}+(n-1)d=3+2(n-1)=2n+1\);\(S_{n}=na_{1}+\frac{n(n-1)}{2}d=3n+n(n-1)=n^{2}+2n\)。2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(q=3\),求\(a_{4}\)與\(S_{4}\)。-答案:\(a_{4}=a_{1}q^{3}=2×3^{3}=54\);\(S_{4}=\frac{a_{1}(1-q^{4})}{1-q}=\frac{2(1-3^{4})}{1-3}=80\)。3.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}+n\),求\(a_{n}\)。-答案:當(dāng)\(n=1\)時,\(a_{1}=S_{1}=1^{2}+1=2\);當(dāng)\(n\geq2\)時,\(a_{n}=S_{n}-S_{n-1}=(n^{2}+n)-[(n-1)^{2}+(n-1)]=2n\),\(n=1\)時也滿足,所以\(a_{n}=2n\)。4.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=5\),\(a_{5}=9\),求\(a_{1}\)與\(d\)。-答案:由\(a_{n}=a_{1}+(n-1)d\)可得\(\begin{cases}a_{1}+2d=5\\a_{1}+4d=9\end{cases}\),兩式相減得\(2d=4\),即\(d=2\),將\(d=2\)代入\(a_{1}+2d=5\)得\(a_{1}=1\)。討論題(每題5分,共4題)1.討論等差數(shù)列和等比數(shù)列在實際生活中的應(yīng)用實例及意義。-答案:等差數(shù)列如銀行零存整取,每月固定存相同金額,最終本息和計算用到等差數(shù)列知識。等比數(shù)列如細(xì)胞分裂、復(fù)利計算等。意義在于幫助解決經(jīng)濟(jì)、科學(xué)等領(lǐng)域的增長、變化規(guī)律問題,為決策提供依據(jù)。2.若數(shù)列\(zhòng)(\{a_{n}\}\)既是等差數(shù)列又是等比數(shù)列,這樣的數(shù)列有什么特點?-答案:非零常數(shù)列既是等差數(shù)列(公差為\(0\))又是等比數(shù)列(公比為\(1\))。因為若\(a_{n}\)是等差數(shù)列,\(a_{n+1}-a_{n}=d\),是等比數(shù)列\(zhòng)(\frac{a_{n+1}}{a_{n}}=q\),只有\(zhòng)(d=0\)且\(q=1\)時滿足,此時\(a_{n}\)為非零常數(shù)列。3.如何根據(jù)數(shù)列的前幾項推測數(shù)列的通項公式?有哪些方法和注意事項?-答案:方法有觀察數(shù)字特征,如數(shù)字間的差、商規(guī)律;將數(shù)列與常見數(shù)列對比等。注意事項:僅根據(jù)前幾項推測的通項公式不唯一;要多驗證幾項;對于復(fù)雜數(shù)列可能需先對各項進(jìn)行變形處理。4.對于數(shù)列的前\(n\)項和\(S_{n}\)與通項\(a_{n}\)的關(guān)系\(a_{n}=\begin{cases}S_{1},n=1\\S_{n}-S_{n-1},n\geq2\end{cases}\),在應(yīng)用中可能會遇到哪些問題?-答案:可能遇到\(n=1\)時\(a_{1}=S_{1}\)與\(n\geq2\)時\(a_{n}=S_{n}-S_{n-1}\)推出的表達(dá)式不統(tǒng)一,需單獨驗證\(n=1\)時是否滿足\(n\geq2\)的表達(dá)式;計算\(S_{n}-S_{n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論