13.麥肯錫《2024年全球能源展望報告》_第1頁
13.麥肯錫《2024年全球能源展望報告》_第2頁
13.麥肯錫《2024年全球能源展望報告》_第3頁
13.麥肯錫《2024年全球能源展望報告》_第4頁
13.麥肯錫《2024年全球能源展望報告》_第5頁
已閱讀5頁,還剩73頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

GlobalEnergy

Perspective2024

September2024

Aboutthisreport

TheGlobalEnergyPerspectiveisproducedbyEnergySolutions,partofMcKinsey’sGlobal

Energy&MaterialsPractice,inclosecollaborationwithMcKinsey’sSustainabilityand

AdvancedIndustriespractices.McKinseyiscommittedtoourpositionthattheworldrequiresamajorcoursecorrectiontoreachclimategoalsalignedwiththeParisAgreement,andour

researchisfocusedonhelpingglobalstakeholdersmeetthosetargets.

TheGlobalEnergyPerspective2024offersadetaileddemandoutlookfor68sectorsand

78fuelsacrossa1.5°pathway,assetoutintheParisAgreement,aswellasthreebottom-

upenergytransitionscenarios.Thescenarioshavebeenredesignedthisyeartobetter

reflectchangingglobalconditions,includinggeopoliticalchallenges,increasinglycomplex

supplychains,andhigherinflation.Together,theyexplorepotentialoutcomes,rangingfrom

asustainabletransformation—aplausiblescenariowheresustainabilitybecomesaglobal

priorityandnationscoordinatetowarddecarbonization,despitethechallenges—througha

continuationofthecurrentenergytransitionmomentum,toaslowerevolutioncharacterizedbyafragmentedresponsetodecarbonization.Dataforthesescenarioscomefromavariety

ofsources,includingtheInternationalEnergyAgency(IEA),theEnergyInstitute,Eurostat,theIntergovernmentalPanelonClimateChange(IPCC),OxfordEconomics,theUnitedNations,

theUSDepartmentofAgriculture(USDA),andtheUSEnergyInformationAdministration,amongothers.

Thisbroadrangeofscenariosisintendedtoshowtheimplicationsofdifferentpathwaysand

toprovideafactbasetoinformdecisionmakers.However,thesescenariosarenotexhaustiveintherealmofallpossibleoutcomes,norwillanyindividualscenariounfoldexactlyaswe

describeit.Incertaincasesinthisreport,wemayhighlightaparticularscenariothatbest

illustratesatrend,butthisdoesnotmeanthatwebelievethisscenarioismoreorlesslikelytoreflecttheactualoutcome.Theinsightsinthisreportarebasedoncurrentlyavailabledata,

butmultiplefactorscouldinfluencereal-worldoutcomesastheenergytransitioncontinuestoadvance.

AboutEnergySolutions:EnergySolutionsisMcKinsey’sglobalmarketintelligenceand

analyticsgroupfocusedontheenergysector.Thegroupenablesorganizationstomake

well-informedstrategic,tactical,andoperationaldecisionsbyusinganintegratedsuiteof

marketmodels,proprietaryindustrydata,leadingindustrybenchmarks,advancedanalyticaltools,andaglobalnetworkofindustryexperts.Itworkswithleadingcompaniesacrossthe

entireenergyvaluechaintohelpthemmanagerisk,optimizetheirorganizations,andimproveperformance.

AbouttheGlobalEnergy&MaterialsPractice:McKinsey’sGlobalEnergy&Materials

Practicedeploysitsdeepinsights,functionalcapabilities,andproprietarybenchmarkand

datasolutionsacrosstheconvergingenergy,materials,andnaturalresourcessupplychainstohelpcreatesubstantialandlong-lastingvalueforstakeholders.Guidedbyadvanced

analyticsandthepowerofaglobalteam,itbringsdistinctiveindustryperspectivesacross

sectorsthatsupporttoday’scriticalinfrastructureecosystems.Thepracticeisproudtohavepartneredwithhundredsofmajorindustryplayersastheleadingandmostintegratedadvisoronstrategicandfunctionaltransformations,enablingclientstoacceleratedecarbonization

andrealizetheenergy,materials,andfoodtransitions.

AboutMcKinsey&Company:McKinseyisaglobalmanagementconsultingfirmcommittedtohelpingorganizationsacceleratesustainableandinclusivegrowth.Thefirmworkswith

clientsacrosstheprivate,public,andsocialsectorstosolvecomplexproblemsandcreatepositivechangeforalltheirstakeholders.Itcombinesboldstrategiesandtransformativetechnologiestohelporganizationsinnovatemoresustainably,achievelastinggainsin

performance,andbuildworkforcesthatwillthriveforthisgenerationandthosetocome.

2GlobalEnergyPerspective2024

GlobalEnergyPerspective2024:Foreword

WhilesignificantprogresshasbeenmadeinthenineyearssincethelandmarkParis

we,really

?,”thereisapersistentandgrowinggapbetweenlow-carbontechnologyproject

Agreement,theglobalenergytransitionisenteringanewphase,markedbyrisingcosts,

commitmentsandrealization,withasignificantproportionofannouncedprojectsnot

complexity,andincreasedtechnologychallenges.Tosuccessfullynavigatethisnextphase

reachingfinalinvestmentdecision(FID).5Corporate,public,andprivateinvestorsarehesitant

andmeettheParisAgreementgoals,urgentactionwillberequiredandthepaceofchange

aboutdeployingcapitalduetosofteningbusinesscases,technologycost-competitiveness,

mustaccelerate.1Thecleanenergytransitionwillalsoneedtobebalancedwithaffordability,

andproject-enablingandmarket-formingpolicysupport.Valuechainsremainconstrained

energysystemresiliency,andenergysecurityinanincreasinglyuncertainmacroeconomic

acrossalllow-carbontechnologies,impactingtheavailabilityofeverythingfrombasic

environment.

materialstoequipment.Consequently,fossilfuelswillcontinuetosupplygrowingenergydemandacrossallourbottom-upscenarios.

Despitesignificantglobalpublicandprivatesectormomentumgroundedinincreasingly

ambitiouspolicies,overcomingmajorphysicalchallengesiscrucialtotransformtoday’slarge

Successfullynavigatingthetransitionawayfromfossilfuelswillrequirefocusingbeyond

andcomplexenergysystem.Newlow-carbontechnologieswillhavetobedevelopedand

asinglesolutionortechnology.Therearenosilverbullets—thefuturecallsforaholistic

deployed,alongwithentirelynewsupplychainsandinfrastructuretosupportthem.While

transformationoftheglobalenergysystembyincorporatingarangeofprovenandemerging

thecostoflow-carbontechnologieshascontinuedtodeclineinmostregions,inMcKinsey

levers.Todothis,considerationsbeyondtechnologicalfeasibilitywillneedtobeaddressed,

GlobalInstitute’srecentreport,“

Thehardstuff:Navigatingthephysicalrealitiesoftheenergy

transition

,”itisestimatedthatonly10percentofthetechnologiesrequiredgloballyby2050havebeendeployed.Mostoftheseinpromisingusecasesor“l(fā)ow-hangingfruit”where

spanningcapitaldeployment,improvingbusinesscases,ensuringeconomicreturns,

adjustingregulation,andestablishingcontinuedpoliticalandpublicsupportinthefaceofcompetingeconomicandsocietalpriorities.

policyandfundinghavebeenmostplentiful.2Forexample,renewableenergysources(RES)

haveseensignificantsuccess.InEurope,solarphotovoltaic(PV)deploymentisontrack

Thisreportpresentsaviewoftheroadaheadtoserveasafactbaseforstakeholders

tomeet2030targetsandsolarPVbuild-outinSpainsitsataround30gigawatts(GW)of

tonavigatetheopportunitiesandchallengesofthisnewphase.Itdoesnotconstitute

installedcapacity,whichcoulddoubleby2030atthecurrentgrowthtrajectory.3Chinahas

McKinsey’sviewonwhatshouldhappen,butratherpresentsarangeofscenariosthatcould

alsoreportednotableachievementsinlow-carbontechnologydeployment,withmoresolar

plausiblyplayout,basedonthebestdatacurrentlyavailable—recognizingthattheenergy

capacityandelectricvehicles(EVs)addedlastyearthanbytherestoftheworldcombined.4

transitionisanextremelycomplexundertakinginfluencedbymultiplefactors.Thecriticalquestionthisresearchaimstoaddressishowtheworldcanachieveastepchangeinits

Bycontrast,anewwaveoflessmaturetechnologiesfacescoststhatmayinhibitlarge-scale

deployment.AshighlightedinMcKinsey’srecentarticle,“

Theenergytransition:Whereare

effortstowardmeetingnet-zerogoalsandavoidtheworstimpactsofclimatechange.

1Formoreonthetrade-offsassociatedwiththeenergytransition,see

MekalaKrishnan

,

DanielPacthod

,and

SvenSmit

,“Affordability,reliability,andindustrialcompetitivenesswillmakeorbreakthenet-zerotransition.Here’show,”McKinsey,March14,2024.

2Thehardstuff:Navigatingthephysicalrealitiesoftheenergytransition,”McKinseyGlobalInstitute,August14,2024.

3“TheIberiangreenindustrialopportunity:Electrificationandrenewables,”McKinsey,July31,2024.

4GlobalEVoutlook2024,IEA,April2024;"Electricity2024,"IEA,January2024.

5“Theenergytransition:Wherearewe,really?,”McKinsey,August27,2024.

3GlobalEnergyPerspective2024

4GlobalEnergyPerspective2024

GlobalEnergyPerspective2024:Ourperspectiveredesigned

GlobalEnergyPerspectiveintelligencenetwork

OurfuIIyintegratedsuppIyanddemandperspectiveincorporatesenergydemand

driversfromMcKinseyIsbroaderresearchteamswiththeEnergy&MateriaIsPractice’ssuitesofmarketinteIIigencemodeIs

Modelsuitecategories1Energydemand

?ChemicaIs

?IndustryandbuiIdings

?Maritimeandaviation

?Power

?Roadtransport

Fossilfuelsupply

Energy

demanddrivers

?Mobility

(viaMcKinsey

Centerfor

FutureMobiIity)

?Macroeconomics(viaMcKinsey

GIobaIInstitute)

?Petrochemicals(viaChemicaI

Insights)

Fossilfuel

supply

Energy

demand

Integrated

energy

implications

Electricity

supply

ModeIsuites

Low-carbon

fuelssupply

?GasandLNG

?Midstreamandservices

?NorthAmericaoiIandgas

?OiIandIiquids

?Re?ningactivityandmarginsElectricitysupply

?PowergenerationandpricingLow-carbonfuelssupply

?CCUS2

?Hydrogen

?SustainabIefueIs

Integratedenergyimplications

?Energyassetdecarbonization

?EnergyvaIuepooIs

?Greenpowerprocurementoptimization

?IndustriaIeIectri?cation

?MetaIssuppIyanddemand

1Non-exhaustive;onIymajormodeIsuiteswithIinkagetoGIobaIEnergyPerspectiveareshown.2Carboncapture,utiIization,andstorage.

6Allscenariosassumeaconsensusviewofaround2.3percentglobalGDPgrowthperyearbetween2023and2050;(OxfordEconomics;McKinseyanalysis).

Globally,net-zerotargetshaveproliferated,and

commitmentsandenthusiasmforreachingnetzeroareontherise.However,thecrucialtransitiontechnologiesneededtoachievethesetargetsarestillnotbeing

deployedattherequiredspeed.Inthenextphaseoftheglobalenergytransition,low-carbontechnologiesneedtoscaleupinanenvironmentwherecapitalavailabilityisdecreasinginlightofelevatedinterestratesand

geopoliticaldevelopments.Toconsiderthisevolvingglobalenvironment,wehaveredesignedourenergytransitionscenarios6to:

?presentarangeofplausiblefutures,anchoredon

credibleinputassumptionsandtheextrapolationofcurrenttrends

?betterreflectthecomplexityoftheenergy

transition,whichisdrivenbymultiplefactors

?beusedasabaselinetomodeladditionalshockstothesysteminfuture,suchasgeopoliticalchanges

Ourupdatedscenariosareprimarilydifferentiatedoverninedimensionsacrossthreebroadareasthatcould

determinetheevolutionoftheenergytransition:

?Policy:Policyambition,energysecurity,andimpliedCO2price

?Technologydevelopment:Efficiencygains,technologycostlearningcurves,andnoveltechnology

?Potentialconstraintsforrenewables

deployment:Technologybottlenecks,gridbuild-out,andnuclearbuild-out

5GlobalEnergyPerspective2024

McKinsey’sGlobalEnergyPerspective2024exploresa1.5°pathwayandthreebottom-upenergytransitionscenarios

Scenariosreflectthepaceoftechnologicalprogress,levelofpolicyenforcement,andpotentialconstraintsforrenewablesdeployment

Globalgreenhousegasemissions,1GtCO?equivalentperannum

60

50

Slow

Evolution

40

30

ContinuedMomentum

20

Sustainable

Transformation

10

1.5opathway

0

1990200020102020203020402050

Projectedglobaltemperatureincreaseby2050,oC

<1.5

1.5°pathway

~1.8

SustainableTransformation

~2.2

ContinuedMomentum

~2.6

SlowEvolution

FasterSpeedofenergytransitionSlower

Note:1.5°pathwaymodeledaspartofMcKinsey’sClimateMathefort;otherscenariosmodeledbottom-upaspartofMcKinsey’sGlobalEnergyPerspective2024.

1Includesprocessemissionsfromcementproduction,chemicalsproductionandre?ning,andnegativeemissionsfromapplyingcarboncapture,utilization,andstorage(CCUS).

Source:McKinsey,September,2024

7Thewarmingestimateisanindicationoftheglobalriseintemperatureby2100versuspre-industriallevels,basedonMAGICCv7.5.3asusedinIPCCAR6,giventherespectiveenergyandnonenergy(forexample,agricultureanddeforestation)emissionlevelsandassumingthecontinuationoftrendsafter2050butnonet-negativeemissions.The

remainingemissionsin2050(approximately4gigatons[Gt])arecompensatedbynegativeemissionsfromdirectaircarboncaptureandsequestration(DACCS),bioenergywithcarboncaptureandstorage(BECCS),andreforestation.

1.5°pathway

Underthisscenario,a1.5°pathwayisadopted

globally.Internationalcooperationismobilizedto

rapidlyscaledecarbonizationtechnologies,releaselarge-scaleinvestments(includinginemerging

economies),andshiftbehavior.Limitingwarming

to1.5°Ciskeytoavoidingtheworstimpactsof

climatechangeanddoingsowouldrequirestayingwithina570gigaton(Gt)carbonbudget,reducingCO2emissionsby50percentby2030compared

tocurrentlevels—andreachingnet-zeroemissionsby2050.Othergreenhousegases,especially

methaneandnitrousoxide,wouldalsoneedtobe

steeplyreduced.Achievinga1.5°pathwayrequiresasubstantialdeparturefromcurrenttrendsand

significantchangestotheenergydemandmix,

paceofdecarbonization,andinvestmentinto

nascenttechnologies,butisstillpossiblewithrapidglobalactionacrossalleconomicsectors.

Projectedglobaltemperatureincreaseby

20507:<1.5°C

6GlobalEnergyPerspective2024

McKinsey’sGlobalEnergyPerspective2024exploresa1.5°pathwayandthreebottom-upenergytransitionscenarios

Scenariosreflectthepaceoftechnologicalprogress,levelofpolicyenforcement,andpotentialconstraintsforrenewablesdeployment

SustainableTransformation

TheSustainableTransformationscenariochartsa

pathwaytodecarbonizationbasedoncurrentglobal

economicconditionsandtechnologymaturityand

viability.Here,nationsintensifytheircommitment

tosustainability,withincreasingglobalcoordination

toalleviatebottlenecks,unlockinvestmentpledges

forlow-carbontechnologies,andimproveenergy

efficiencyaboverecenthistoricallevels.Global

cooperationtodecarbonizeisunderscoredbythe

creationofcross-regionalfinancing,withnations

adoptingcost-efficientpoliciestoreduceemissions.

However,despitethismomentum,practicalconstraintsimposecertainlimitsonthepaceofcleantechnology

adoption.Forthisscenariotomaterialize,several

economicandtechnologicalissueswouldneedtoberesolved,andinterimtargetsmightnotbemetifnotplausibleundertheseassumptions.

Projectedglobaltemperatureincreaseby2050:

~1.8°C

ContinuedMomentum

IntheContinuedMomentumscenario,nations’focus

onsustainabilityisbalancedbyotherfactors,includingaffordabilityandsecurityofenergysupply,withsome

emergingeconomiesmostlyprioritizingaffordability

andsecurityofsupplyoversustainability.Technology

andefficiencyimprovementslargelyfollowcurrent

trends,drivenbyeconomicswherepracticalconstraintspersistinthewidespreadadoptionoflow-carbon

technologies.Thisscenariolargelymirrorscurrent

trendsandassumestheywillcontinue,resultingin

unevendeploymentoflow-carbontechnologiesacrosstechnologytypeandregions.ThisscenariowouldfailtomeetthekeygoalsoftheParisAgreement,creatinga

rangeofnegativesocial,environmental,andeconomiceffects.

Projectedglobaltemperatureincreaseby2050:

~2.2°C

SlowEvolution

TheSlowEvolutionscenarioseeslocaldecisionmakingfocusedon(domestic)energyaffordabilityandsupply

security,relegatingsustainabilitytoasecondary

priority.Thisfragmentedresponsetodecarbonizationleadstoadecreaseinpriorlow-carboninvestments,

resultinginreducedinvestmentsintolow-carbon

technologyandlowerCO2prices,which,inturn,leads

tosignificantenvironmental,economic,andsocial

impacts.Starkgeographicdifferencesemergeinthis

scenario,withsomecountriesandregionsmakinggoodprogresstowarddecarbonizationtargets,whileotherslagbehindsignificantly.ToanevengreaterextentthantheContinuedMomentumscenario,ifthisscenario

materializes,thekeygoalsoftheParisAgreement

willnotbemet,creatingarangeofseveresocial,environmental,andeconomiceffects.

Projectedglobaltemperatureincreaseby2050:

~2.6°C

7GlobalEnergyPerspective2024McKinsey&Company

Ouranalysisofthedatashowsglobalemissionsto2050

remainingabovea1.5opathway—evenifallcountriesdeliveroncurrentcommitments

Knock-oneffectsandregionaldifferencescoulddrivesignificantlyhighertemperatureincreases

Globalgreenhousegasemissions,1GtCO?equivalentperannum

60

50

40

30

20

10

54

53

51

46

46

35

30

18

8

Slow

Evolution

ContinuedMomentum

Sustainable

Transformation

1.5opathway

0

1990200020102020203020402050

Note:Warmingestimateisanindicationofglobalriseintemperatureby2100versuspre-industriallevels,basedonMAGICCv7.5.3asusedinIPCCAR6giventherespectiveenergyandnon-energy(eg,agriculture,deforestation)emissionlevelsandassumingcontinuationoftrendsafter2050butnonet-negative

emissions.Theremainingemissionsin2050(ie,~4Gt)arecompensatedbynegativeemissionsfromdirectaircarboncaptureandsequestration(DACCS),bioenergywithcarboncaptureandstorage(BECCS),andreforestation.

1Includesprocessemissionsfromcementproduction,chemicalproductionandre?ning,andnegativeemissionsfromapplyingcarboncapture,utilization,andstorage(CCUS).

Source:IEAGlobalEnergyReview2022;IEAWorldEnergyBalances

Increasedenergydemandandthecontinued

roleoffossilfuelsintheenergysystemmean

emissionscouldcontinuerisingthrough2025to

2035.Emissionshavenotyetpeaked,andglobalCO2emissionsfromcombustionandindustrial

processesareprojectedtoincreaseuntilaround2025underallourbottom-upscenarios.The

scenariosbegintodivergetoward2030,withallshowingadeclineinemissionsby2050.Despitethisprojecteddecline,2050emissionsarestillmeaningfullyabovenet-zerotargetsacrossall

scenarios.

Theemissionsdeclineisdrivenprimarilyby

economicfactors,particularlytheincreasingcost-

effectivenessoflow-carbontechnologyinsectors

suchaspowerandroadtransport.Forexample,

solarphotovoltaic(PV)deploymentinEuropeison

tracktoreach2030targets,whileChinaismaking

stridesinbothsolarandelectricvehicle(EV)

adoption.Policyandregulationswillalsocontinuetocontributetotheadoptionoflow-carbontechnologyandsupportadeclineinemissions.

Inallourbottom-upscenarios,risingemissions

wouldleadtoglobaltemperatureincreasesabove

1.5°Cby2050,fromaround1.8°CintheSustainableTransformationscenario,througharound2.2°C

inContinuedMomentum,toaround2.6°CinSlowEvolution.

8GlobalEnergyPerspective2024

Keyinsightsfromouranalysis

Eightimportantinsightsflowfromouranalysisinthisyear’sGlobalEnergyPerspective

1

Despitepolicyinnovations,increasingglobalconsensus,andgrowingprivate-sectorcommitments,emissionsarenotdecliningattheraterequired

Globally,emissionsarerisingandareprojectedtopeakbetween2025and2035before

beginningtodecline,butwouldstaywellabovethecarbonbudgetfora1.5°Ctrajectory.Thisis

despitetheimplementationofnumerouscarbon-mitigatingpoliciesthathavetranslatednet-zerocommitmentsintolegislationsincetheParisAgreement,alongsideincreasingglobalconsensus

arounddecarbonization—withcountriesaccountingformorethan90percentofglobalGDPnow

havingnet-zerocommitmentsinplace—aswellasgrowingprivate-sectorcommitments.While

enactingeffectivepolicytoovercomeacomplexandmultifacetedissuesuchascurbingemissionsischallenging,policyandothergovernmentactionisacrucialcomponentofenablingtheenergy

transition.Inmanycases,macrolevelclimatetargetsareambitious(suchasEUandUSnet-zero

commitmentsby2050)butthesemaynotbesufficientlytranslatedatlower-levelregionsand

jurisdictions.Localinternalcombustionengine(ICE)bansorREStargets,forexample,canmeet

oppositiononthegroundduetoconsumeraffordability,gridcongestion,andmanufacturing

capacity.Additionally,risingenergydemandinemergingeconomies,particularlyintheAssociationofSoutheastAsian(ASEAN)countries,India,andtheMiddleEast,meanscarbon-mitigating

policyintheseregionswillbeimportantincurbingemissions.Thatsaid,net-zerogoalsinthese

regionstendtostretchfurtherintothefuturethaninmorematureeconomies.Otherdifferencesbetweenmatureandemergingeconomiesarealsostillprominent,suchasinthefinancingoflow-carbontechnologies.Takingallofthisintoaccount,existingpolicyandlegislationmayneedtobereexaminedtoenabletheenergytransitionatspeedandatscale.

2

Energydemandisprojectedtogrowbyupto18percentthrough2050

Overthenexttwodecades,ouranalysisshowsthatglobalenergydemandcompositionwillshift,mainlydrivenbygrowthinenergyconsumptionfromemergingeconomies.Thisdemandgrowth

isprimarilyduetoincreasingpopulations,risingGDP(andenergyconsumption)percapita,and

thegrowthandrelocationofmanufacturingindustriestoemergingeconomies.Nevertheless,

percapitaconsumptionintheseregionsisprojectedtoremainbelowthatofmatureeconomies,

drivenbyincreasingenergyefficiency,suchasswitchingfromfossilstolow-carbonenergy

sourcesinASEANcountriesandelectrificationinChina.Inmatureeconomies,aswellasinChina,overalldemandisprojectedtoflattenintheshorttomediumterm.However,thereareseveral

forcesatworkthatcouldaffectthedemandtrajectoryindifferentregions.IntheUnitedStates,

industrialresurgencewoulddrivedemandgrowththroughelectrification,whileinEurope,by

contrast,continueddeindustrializationwouldleadtodecliningdemandintheregion.Globally,newdemandsources,suchasdatacenters(drivenbytheriseofAI),arealsoprojectedtocontributetoincreaseddemand.

9GlobalEnergyPerspective2024

Keyinsightsfromouranalysis

Eightimportantinsightsflowfromouranalysisinthisyear’sGlobalEnergyPerspective

3

Fossilfueldemandcontinues,withapreviouslyanticipatedpeakinthelate2020snowturningintoadecade-spanningplateau

Thebuild-outofcleanenergytechnologieshasnotbeenfastenoughtosupplygrowingglobal

energydemand.Consequently,fossilfuelswillcontinuetobeusedacrossallourbottom-up

scenarios,meeting40to60percentofglobalenergydemandby2050.Continuedoildemand

isprojectedtobedrivenprimarilybyaslowdowninEVadoptionrelativetohistoricalnumbersin

somegeographies,duetohighcostsandrolloutchallenges.Gaswillcontinuetobeusedforpowergenerationtoprovidefirmnessforanenergysystemwithincreasedpenetrationofintermittent

renewables,andgasdistributionforheatingwillbemigratedtoelectricloadoverthemedium

tolongterm.Overall,fossilfueldemandisexpectedtoplateaubetween2025and2035before

declining,withthetimingandrateofthedeclinedifferingbyscenario.Thisdemandpicturemeansfossilfuelinvestmentswillcontinueacrossscenariosandremainacriticalpartoftheenergy

landscapetosupportanorderlyenergytransitionthatisaffordable,reliable,andcompetitive.

4●

Low-carbonenergysourcesaresettogrow,butnotcurrentlyfastenoughtomeetnet-zerogoalsduetobusinesscaseviabilityandotherchallenges

Low-carbonenergysourcesareprojectedtogrow,accountingfor65to80percentofglobal

powergenerationby2050.However,thisgrowthisnotfastenoughundercurrentconditionsto

meetshort-termdeploymenttargets.Growthratesarealsoprojectedtodifferbytechnology.

Thosetechnologiesforwhichthelevelizedcostofenergy(LCOE)isalreadylowatthepointof

production,suchassolar,wind,andenergystoragesystems,areprojectedtocontinuetogrow,

whilethosewithhighercost—includinghydrogenandothersustainablefuels,andcarboncapture,utilization,andstorage(CCUS)—lacksufficientdemandandpolicysupportforstronggrowth.

Solarstandsoutwithparticularlystronggrowthprojections,whilehydrogengrowthto2050hasbeenreviseddownwardby10to25percentcomparedtopreviousestimatesduetohighercostprojections.Overall,low-carbonenergysourcesfaceseveralchallengesthatcouldthreatennet-zerogoals,andwhichareparticularlypronouncedforthosewithhigherLCOE.Weakbusiness

casesfornewinstallationswherefuturerevenuesandtechnologycostsareuncertainputtheprojectpipelineatrisk.Otherchallengesincluderisingcapitalcosts,longerprojecttimelines,andtheneedforgridbuild-out.Forinstance,intheEuropeanUnionandtheUnitedStates,alloperational,under-construction,andannouncedon-andoff-shorewindcapacitymaystillbe

200GWshortof2030targets.Overcomingthesehurdlescouldrequirethesupportofdurable

andflexiblepolicytofacilitatecontinueddeployment.Ouranalysissuggeststhatallelements—

includingrenewableenergy,otherlow-carbonenergysources,energyefficiencygains,andcarboncapture—willberequiredtoachievethegoalsofthetransitionwhileprovidingenergysecurity.

10GlobalEnergyPerspective2024

Keyinsightsfromouranalysis

Eightimportantinsightsflowfromouranalysisinthisyear’sGlobalEnergyPerspective

5

Nuclearcouldplayasignificant

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論