




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
GlobalEnergy
Perspective2024
September2024
Aboutthisreport
TheGlobalEnergyPerspectiveisproducedbyEnergySolutions,partofMcKinsey’sGlobal
Energy&MaterialsPractice,inclosecollaborationwithMcKinsey’sSustainabilityand
AdvancedIndustriespractices.McKinseyiscommittedtoourpositionthattheworldrequiresamajorcoursecorrectiontoreachclimategoalsalignedwiththeParisAgreement,andour
researchisfocusedonhelpingglobalstakeholdersmeetthosetargets.
TheGlobalEnergyPerspective2024offersadetaileddemandoutlookfor68sectorsand
78fuelsacrossa1.5°pathway,assetoutintheParisAgreement,aswellasthreebottom-
upenergytransitionscenarios.Thescenarioshavebeenredesignedthisyeartobetter
reflectchangingglobalconditions,includinggeopoliticalchallenges,increasinglycomplex
supplychains,andhigherinflation.Together,theyexplorepotentialoutcomes,rangingfrom
asustainabletransformation—aplausiblescenariowheresustainabilitybecomesaglobal
priorityandnationscoordinatetowarddecarbonization,despitethechallenges—througha
continuationofthecurrentenergytransitionmomentum,toaslowerevolutioncharacterizedbyafragmentedresponsetodecarbonization.Dataforthesescenarioscomefromavariety
ofsources,includingtheInternationalEnergyAgency(IEA),theEnergyInstitute,Eurostat,theIntergovernmentalPanelonClimateChange(IPCC),OxfordEconomics,theUnitedNations,
theUSDepartmentofAgriculture(USDA),andtheUSEnergyInformationAdministration,amongothers.
Thisbroadrangeofscenariosisintendedtoshowtheimplicationsofdifferentpathwaysand
toprovideafactbasetoinformdecisionmakers.However,thesescenariosarenotexhaustiveintherealmofallpossibleoutcomes,norwillanyindividualscenariounfoldexactlyaswe
describeit.Incertaincasesinthisreport,wemayhighlightaparticularscenariothatbest
illustratesatrend,butthisdoesnotmeanthatwebelievethisscenarioismoreorlesslikelytoreflecttheactualoutcome.Theinsightsinthisreportarebasedoncurrentlyavailabledata,
butmultiplefactorscouldinfluencereal-worldoutcomesastheenergytransitioncontinuestoadvance.
AboutEnergySolutions:EnergySolutionsisMcKinsey’sglobalmarketintelligenceand
analyticsgroupfocusedontheenergysector.Thegroupenablesorganizationstomake
well-informedstrategic,tactical,andoperationaldecisionsbyusinganintegratedsuiteof
marketmodels,proprietaryindustrydata,leadingindustrybenchmarks,advancedanalyticaltools,andaglobalnetworkofindustryexperts.Itworkswithleadingcompaniesacrossthe
entireenergyvaluechaintohelpthemmanagerisk,optimizetheirorganizations,andimproveperformance.
AbouttheGlobalEnergy&MaterialsPractice:McKinsey’sGlobalEnergy&Materials
Practicedeploysitsdeepinsights,functionalcapabilities,andproprietarybenchmarkand
datasolutionsacrosstheconvergingenergy,materials,andnaturalresourcessupplychainstohelpcreatesubstantialandlong-lastingvalueforstakeholders.Guidedbyadvanced
analyticsandthepowerofaglobalteam,itbringsdistinctiveindustryperspectivesacross
sectorsthatsupporttoday’scriticalinfrastructureecosystems.Thepracticeisproudtohavepartneredwithhundredsofmajorindustryplayersastheleadingandmostintegratedadvisoronstrategicandfunctionaltransformations,enablingclientstoacceleratedecarbonization
andrealizetheenergy,materials,andfoodtransitions.
AboutMcKinsey&Company:McKinseyisaglobalmanagementconsultingfirmcommittedtohelpingorganizationsacceleratesustainableandinclusivegrowth.Thefirmworkswith
clientsacrosstheprivate,public,andsocialsectorstosolvecomplexproblemsandcreatepositivechangeforalltheirstakeholders.Itcombinesboldstrategiesandtransformativetechnologiestohelporganizationsinnovatemoresustainably,achievelastinggainsin
performance,andbuildworkforcesthatwillthriveforthisgenerationandthosetocome.
2GlobalEnergyPerspective2024
GlobalEnergyPerspective2024:Foreword
WhilesignificantprogresshasbeenmadeinthenineyearssincethelandmarkParis
we,really
?,”thereisapersistentandgrowinggapbetweenlow-carbontechnologyproject
Agreement,theglobalenergytransitionisenteringanewphase,markedbyrisingcosts,
commitmentsandrealization,withasignificantproportionofannouncedprojectsnot
complexity,andincreasedtechnologychallenges.Tosuccessfullynavigatethisnextphase
reachingfinalinvestmentdecision(FID).5Corporate,public,andprivateinvestorsarehesitant
andmeettheParisAgreementgoals,urgentactionwillberequiredandthepaceofchange
aboutdeployingcapitalduetosofteningbusinesscases,technologycost-competitiveness,
mustaccelerate.1Thecleanenergytransitionwillalsoneedtobebalancedwithaffordability,
andproject-enablingandmarket-formingpolicysupport.Valuechainsremainconstrained
energysystemresiliency,andenergysecurityinanincreasinglyuncertainmacroeconomic
acrossalllow-carbontechnologies,impactingtheavailabilityofeverythingfrombasic
environment.
materialstoequipment.Consequently,fossilfuelswillcontinuetosupplygrowingenergydemandacrossallourbottom-upscenarios.
Despitesignificantglobalpublicandprivatesectormomentumgroundedinincreasingly
ambitiouspolicies,overcomingmajorphysicalchallengesiscrucialtotransformtoday’slarge
Successfullynavigatingthetransitionawayfromfossilfuelswillrequirefocusingbeyond
andcomplexenergysystem.Newlow-carbontechnologieswillhavetobedevelopedand
asinglesolutionortechnology.Therearenosilverbullets—thefuturecallsforaholistic
deployed,alongwithentirelynewsupplychainsandinfrastructuretosupportthem.While
transformationoftheglobalenergysystembyincorporatingarangeofprovenandemerging
thecostoflow-carbontechnologieshascontinuedtodeclineinmostregions,inMcKinsey
levers.Todothis,considerationsbeyondtechnologicalfeasibilitywillneedtobeaddressed,
GlobalInstitute’srecentreport,“
Thehardstuff:Navigatingthephysicalrealitiesoftheenergy
transition
,”itisestimatedthatonly10percentofthetechnologiesrequiredgloballyby2050havebeendeployed.Mostoftheseinpromisingusecasesor“l(fā)ow-hangingfruit”where
spanningcapitaldeployment,improvingbusinesscases,ensuringeconomicreturns,
adjustingregulation,andestablishingcontinuedpoliticalandpublicsupportinthefaceofcompetingeconomicandsocietalpriorities.
policyandfundinghavebeenmostplentiful.2Forexample,renewableenergysources(RES)
haveseensignificantsuccess.InEurope,solarphotovoltaic(PV)deploymentisontrack
Thisreportpresentsaviewoftheroadaheadtoserveasafactbaseforstakeholders
tomeet2030targetsandsolarPVbuild-outinSpainsitsataround30gigawatts(GW)of
tonavigatetheopportunitiesandchallengesofthisnewphase.Itdoesnotconstitute
installedcapacity,whichcoulddoubleby2030atthecurrentgrowthtrajectory.3Chinahas
McKinsey’sviewonwhatshouldhappen,butratherpresentsarangeofscenariosthatcould
alsoreportednotableachievementsinlow-carbontechnologydeployment,withmoresolar
plausiblyplayout,basedonthebestdatacurrentlyavailable—recognizingthattheenergy
capacityandelectricvehicles(EVs)addedlastyearthanbytherestoftheworldcombined.4
transitionisanextremelycomplexundertakinginfluencedbymultiplefactors.Thecriticalquestionthisresearchaimstoaddressishowtheworldcanachieveastepchangeinits
Bycontrast,anewwaveoflessmaturetechnologiesfacescoststhatmayinhibitlarge-scale
deployment.AshighlightedinMcKinsey’srecentarticle,“
Theenergytransition:Whereare
effortstowardmeetingnet-zerogoalsandavoidtheworstimpactsofclimatechange.
1Formoreonthetrade-offsassociatedwiththeenergytransition,see
MekalaKrishnan
,
DanielPacthod
,and
SvenSmit
,“Affordability,reliability,andindustrialcompetitivenesswillmakeorbreakthenet-zerotransition.Here’show,”McKinsey,March14,2024.
2Thehardstuff:Navigatingthephysicalrealitiesoftheenergytransition,”McKinseyGlobalInstitute,August14,2024.
3“TheIberiangreenindustrialopportunity:Electrificationandrenewables,”McKinsey,July31,2024.
4GlobalEVoutlook2024,IEA,April2024;"Electricity2024,"IEA,January2024.
5“Theenergytransition:Wherearewe,really?,”McKinsey,August27,2024.
3GlobalEnergyPerspective2024
4GlobalEnergyPerspective2024
GlobalEnergyPerspective2024:Ourperspectiveredesigned
GlobalEnergyPerspectiveintelligencenetwork
OurfuIIyintegratedsuppIyanddemandperspectiveincorporatesenergydemand
driversfromMcKinseyIsbroaderresearchteamswiththeEnergy&MateriaIsPractice’ssuitesofmarketinteIIigencemodeIs
Modelsuitecategories1Energydemand
?ChemicaIs
?IndustryandbuiIdings
?Maritimeandaviation
?Power
?Roadtransport
Fossilfuelsupply
Energy
demanddrivers
?Mobility
(viaMcKinsey
Centerfor
FutureMobiIity)
?Macroeconomics(viaMcKinsey
GIobaIInstitute)
?Petrochemicals(viaChemicaI
Insights)
Fossilfuel
supply
Energy
demand
Integrated
energy
implications
Electricity
supply
ModeIsuites
Low-carbon
fuelssupply
?GasandLNG
?Midstreamandservices
?NorthAmericaoiIandgas
?OiIandIiquids
?Re?ningactivityandmarginsElectricitysupply
?PowergenerationandpricingLow-carbonfuelssupply
?CCUS2
?Hydrogen
?SustainabIefueIs
Integratedenergyimplications
?Energyassetdecarbonization
?EnergyvaIuepooIs
?Greenpowerprocurementoptimization
?IndustriaIeIectri?cation
?MetaIssuppIyanddemand
1Non-exhaustive;onIymajormodeIsuiteswithIinkagetoGIobaIEnergyPerspectiveareshown.2Carboncapture,utiIization,andstorage.
6Allscenariosassumeaconsensusviewofaround2.3percentglobalGDPgrowthperyearbetween2023and2050;(OxfordEconomics;McKinseyanalysis).
Globally,net-zerotargetshaveproliferated,and
commitmentsandenthusiasmforreachingnetzeroareontherise.However,thecrucialtransitiontechnologiesneededtoachievethesetargetsarestillnotbeing
deployedattherequiredspeed.Inthenextphaseoftheglobalenergytransition,low-carbontechnologiesneedtoscaleupinanenvironmentwherecapitalavailabilityisdecreasinginlightofelevatedinterestratesand
geopoliticaldevelopments.Toconsiderthisevolvingglobalenvironment,wehaveredesignedourenergytransitionscenarios6to:
?presentarangeofplausiblefutures,anchoredon
credibleinputassumptionsandtheextrapolationofcurrenttrends
?betterreflectthecomplexityoftheenergy
transition,whichisdrivenbymultiplefactors
?beusedasabaselinetomodeladditionalshockstothesysteminfuture,suchasgeopoliticalchanges
Ourupdatedscenariosareprimarilydifferentiatedoverninedimensionsacrossthreebroadareasthatcould
determinetheevolutionoftheenergytransition:
?Policy:Policyambition,energysecurity,andimpliedCO2price
?Technologydevelopment:Efficiencygains,technologycostlearningcurves,andnoveltechnology
?Potentialconstraintsforrenewables
deployment:Technologybottlenecks,gridbuild-out,andnuclearbuild-out
5GlobalEnergyPerspective2024
McKinsey’sGlobalEnergyPerspective2024exploresa1.5°pathwayandthreebottom-upenergytransitionscenarios
Scenariosreflectthepaceoftechnologicalprogress,levelofpolicyenforcement,andpotentialconstraintsforrenewablesdeployment
Globalgreenhousegasemissions,1GtCO?equivalentperannum
60
50
Slow
Evolution
40
30
ContinuedMomentum
20
Sustainable
Transformation
10
1.5opathway
0
1990200020102020203020402050
Projectedglobaltemperatureincreaseby2050,oC
<1.5
1.5°pathway
~1.8
SustainableTransformation
~2.2
ContinuedMomentum
~2.6
SlowEvolution
FasterSpeedofenergytransitionSlower
Note:1.5°pathwaymodeledaspartofMcKinsey’sClimateMathefort;otherscenariosmodeledbottom-upaspartofMcKinsey’sGlobalEnergyPerspective2024.
1Includesprocessemissionsfromcementproduction,chemicalsproductionandre?ning,andnegativeemissionsfromapplyingcarboncapture,utilization,andstorage(CCUS).
Source:McKinsey,September,2024
7Thewarmingestimateisanindicationoftheglobalriseintemperatureby2100versuspre-industriallevels,basedonMAGICCv7.5.3asusedinIPCCAR6,giventherespectiveenergyandnonenergy(forexample,agricultureanddeforestation)emissionlevelsandassumingthecontinuationoftrendsafter2050butnonet-negativeemissions.The
remainingemissionsin2050(approximately4gigatons[Gt])arecompensatedbynegativeemissionsfromdirectaircarboncaptureandsequestration(DACCS),bioenergywithcarboncaptureandstorage(BECCS),andreforestation.
1.5°pathway
Underthisscenario,a1.5°pathwayisadopted
globally.Internationalcooperationismobilizedto
rapidlyscaledecarbonizationtechnologies,releaselarge-scaleinvestments(includinginemerging
economies),andshiftbehavior.Limitingwarming
to1.5°Ciskeytoavoidingtheworstimpactsof
climatechangeanddoingsowouldrequirestayingwithina570gigaton(Gt)carbonbudget,reducingCO2emissionsby50percentby2030compared
tocurrentlevels—andreachingnet-zeroemissionsby2050.Othergreenhousegases,especially
methaneandnitrousoxide,wouldalsoneedtobe
steeplyreduced.Achievinga1.5°pathwayrequiresasubstantialdeparturefromcurrenttrendsand
significantchangestotheenergydemandmix,
paceofdecarbonization,andinvestmentinto
nascenttechnologies,butisstillpossiblewithrapidglobalactionacrossalleconomicsectors.
Projectedglobaltemperatureincreaseby
20507:<1.5°C
6GlobalEnergyPerspective2024
McKinsey’sGlobalEnergyPerspective2024exploresa1.5°pathwayandthreebottom-upenergytransitionscenarios
Scenariosreflectthepaceoftechnologicalprogress,levelofpolicyenforcement,andpotentialconstraintsforrenewablesdeployment
SustainableTransformation
TheSustainableTransformationscenariochartsa
pathwaytodecarbonizationbasedoncurrentglobal
economicconditionsandtechnologymaturityand
viability.Here,nationsintensifytheircommitment
tosustainability,withincreasingglobalcoordination
toalleviatebottlenecks,unlockinvestmentpledges
forlow-carbontechnologies,andimproveenergy
efficiencyaboverecenthistoricallevels.Global
cooperationtodecarbonizeisunderscoredbythe
creationofcross-regionalfinancing,withnations
adoptingcost-efficientpoliciestoreduceemissions.
However,despitethismomentum,practicalconstraintsimposecertainlimitsonthepaceofcleantechnology
adoption.Forthisscenariotomaterialize,several
economicandtechnologicalissueswouldneedtoberesolved,andinterimtargetsmightnotbemetifnotplausibleundertheseassumptions.
Projectedglobaltemperatureincreaseby2050:
~1.8°C
ContinuedMomentum
IntheContinuedMomentumscenario,nations’focus
onsustainabilityisbalancedbyotherfactors,includingaffordabilityandsecurityofenergysupply,withsome
emergingeconomiesmostlyprioritizingaffordability
andsecurityofsupplyoversustainability.Technology
andefficiencyimprovementslargelyfollowcurrent
trends,drivenbyeconomicswherepracticalconstraintspersistinthewidespreadadoptionoflow-carbon
technologies.Thisscenariolargelymirrorscurrent
trendsandassumestheywillcontinue,resultingin
unevendeploymentoflow-carbontechnologiesacrosstechnologytypeandregions.ThisscenariowouldfailtomeetthekeygoalsoftheParisAgreement,creatinga
rangeofnegativesocial,environmental,andeconomiceffects.
Projectedglobaltemperatureincreaseby2050:
~2.2°C
SlowEvolution
TheSlowEvolutionscenarioseeslocaldecisionmakingfocusedon(domestic)energyaffordabilityandsupply
security,relegatingsustainabilitytoasecondary
priority.Thisfragmentedresponsetodecarbonizationleadstoadecreaseinpriorlow-carboninvestments,
resultinginreducedinvestmentsintolow-carbon
technologyandlowerCO2prices,which,inturn,leads
tosignificantenvironmental,economic,andsocial
impacts.Starkgeographicdifferencesemergeinthis
scenario,withsomecountriesandregionsmakinggoodprogresstowarddecarbonizationtargets,whileotherslagbehindsignificantly.ToanevengreaterextentthantheContinuedMomentumscenario,ifthisscenario
materializes,thekeygoalsoftheParisAgreement
willnotbemet,creatingarangeofseveresocial,environmental,andeconomiceffects.
Projectedglobaltemperatureincreaseby2050:
~2.6°C
7GlobalEnergyPerspective2024McKinsey&Company
Ouranalysisofthedatashowsglobalemissionsto2050
remainingabovea1.5opathway—evenifallcountriesdeliveroncurrentcommitments
Knock-oneffectsandregionaldifferencescoulddrivesignificantlyhighertemperatureincreases
Globalgreenhousegasemissions,1GtCO?equivalentperannum
60
50
40
30
20
10
54
53
51
46
46
35
30
18
8
Slow
Evolution
ContinuedMomentum
Sustainable
Transformation
1.5opathway
0
1990200020102020203020402050
Note:Warmingestimateisanindicationofglobalriseintemperatureby2100versuspre-industriallevels,basedonMAGICCv7.5.3asusedinIPCCAR6giventherespectiveenergyandnon-energy(eg,agriculture,deforestation)emissionlevelsandassumingcontinuationoftrendsafter2050butnonet-negative
emissions.Theremainingemissionsin2050(ie,~4Gt)arecompensatedbynegativeemissionsfromdirectaircarboncaptureandsequestration(DACCS),bioenergywithcarboncaptureandstorage(BECCS),andreforestation.
1Includesprocessemissionsfromcementproduction,chemicalproductionandre?ning,andnegativeemissionsfromapplyingcarboncapture,utilization,andstorage(CCUS).
Source:IEAGlobalEnergyReview2022;IEAWorldEnergyBalances
Increasedenergydemandandthecontinued
roleoffossilfuelsintheenergysystemmean
emissionscouldcontinuerisingthrough2025to
2035.Emissionshavenotyetpeaked,andglobalCO2emissionsfromcombustionandindustrial
processesareprojectedtoincreaseuntilaround2025underallourbottom-upscenarios.The
scenariosbegintodivergetoward2030,withallshowingadeclineinemissionsby2050.Despitethisprojecteddecline,2050emissionsarestillmeaningfullyabovenet-zerotargetsacrossall
scenarios.
Theemissionsdeclineisdrivenprimarilyby
economicfactors,particularlytheincreasingcost-
effectivenessoflow-carbontechnologyinsectors
suchaspowerandroadtransport.Forexample,
solarphotovoltaic(PV)deploymentinEuropeison
tracktoreach2030targets,whileChinaismaking
stridesinbothsolarandelectricvehicle(EV)
adoption.Policyandregulationswillalsocontinuetocontributetotheadoptionoflow-carbontechnologyandsupportadeclineinemissions.
Inallourbottom-upscenarios,risingemissions
wouldleadtoglobaltemperatureincreasesabove
1.5°Cby2050,fromaround1.8°CintheSustainableTransformationscenario,througharound2.2°C
inContinuedMomentum,toaround2.6°CinSlowEvolution.
8GlobalEnergyPerspective2024
Keyinsightsfromouranalysis
Eightimportantinsightsflowfromouranalysisinthisyear’sGlobalEnergyPerspective
1
Despitepolicyinnovations,increasingglobalconsensus,andgrowingprivate-sectorcommitments,emissionsarenotdecliningattheraterequired
Globally,emissionsarerisingandareprojectedtopeakbetween2025and2035before
beginningtodecline,butwouldstaywellabovethecarbonbudgetfora1.5°Ctrajectory.Thisis
despitetheimplementationofnumerouscarbon-mitigatingpoliciesthathavetranslatednet-zerocommitmentsintolegislationsincetheParisAgreement,alongsideincreasingglobalconsensus
arounddecarbonization—withcountriesaccountingformorethan90percentofglobalGDPnow
havingnet-zerocommitmentsinplace—aswellasgrowingprivate-sectorcommitments.While
enactingeffectivepolicytoovercomeacomplexandmultifacetedissuesuchascurbingemissionsischallenging,policyandothergovernmentactionisacrucialcomponentofenablingtheenergy
transition.Inmanycases,macrolevelclimatetargetsareambitious(suchasEUandUSnet-zero
commitmentsby2050)butthesemaynotbesufficientlytranslatedatlower-levelregionsand
jurisdictions.Localinternalcombustionengine(ICE)bansorREStargets,forexample,canmeet
oppositiononthegroundduetoconsumeraffordability,gridcongestion,andmanufacturing
capacity.Additionally,risingenergydemandinemergingeconomies,particularlyintheAssociationofSoutheastAsian(ASEAN)countries,India,andtheMiddleEast,meanscarbon-mitigating
policyintheseregionswillbeimportantincurbingemissions.Thatsaid,net-zerogoalsinthese
regionstendtostretchfurtherintothefuturethaninmorematureeconomies.Otherdifferencesbetweenmatureandemergingeconomiesarealsostillprominent,suchasinthefinancingoflow-carbontechnologies.Takingallofthisintoaccount,existingpolicyandlegislationmayneedtobereexaminedtoenabletheenergytransitionatspeedandatscale.
2
Energydemandisprojectedtogrowbyupto18percentthrough2050
Overthenexttwodecades,ouranalysisshowsthatglobalenergydemandcompositionwillshift,mainlydrivenbygrowthinenergyconsumptionfromemergingeconomies.Thisdemandgrowth
isprimarilyduetoincreasingpopulations,risingGDP(andenergyconsumption)percapita,and
thegrowthandrelocationofmanufacturingindustriestoemergingeconomies.Nevertheless,
percapitaconsumptionintheseregionsisprojectedtoremainbelowthatofmatureeconomies,
drivenbyincreasingenergyefficiency,suchasswitchingfromfossilstolow-carbonenergy
sourcesinASEANcountriesandelectrificationinChina.Inmatureeconomies,aswellasinChina,overalldemandisprojectedtoflattenintheshorttomediumterm.However,thereareseveral
forcesatworkthatcouldaffectthedemandtrajectoryindifferentregions.IntheUnitedStates,
industrialresurgencewoulddrivedemandgrowththroughelectrification,whileinEurope,by
contrast,continueddeindustrializationwouldleadtodecliningdemandintheregion.Globally,newdemandsources,suchasdatacenters(drivenbytheriseofAI),arealsoprojectedtocontributetoincreaseddemand.
9GlobalEnergyPerspective2024
Keyinsightsfromouranalysis
Eightimportantinsightsflowfromouranalysisinthisyear’sGlobalEnergyPerspective
3
Fossilfueldemandcontinues,withapreviouslyanticipatedpeakinthelate2020snowturningintoadecade-spanningplateau
Thebuild-outofcleanenergytechnologieshasnotbeenfastenoughtosupplygrowingglobal
energydemand.Consequently,fossilfuelswillcontinuetobeusedacrossallourbottom-up
scenarios,meeting40to60percentofglobalenergydemandby2050.Continuedoildemand
isprojectedtobedrivenprimarilybyaslowdowninEVadoptionrelativetohistoricalnumbersin
somegeographies,duetohighcostsandrolloutchallenges.Gaswillcontinuetobeusedforpowergenerationtoprovidefirmnessforanenergysystemwithincreasedpenetrationofintermittent
renewables,andgasdistributionforheatingwillbemigratedtoelectricloadoverthemedium
tolongterm.Overall,fossilfueldemandisexpectedtoplateaubetween2025and2035before
declining,withthetimingandrateofthedeclinedifferingbyscenario.Thisdemandpicturemeansfossilfuelinvestmentswillcontinueacrossscenariosandremainacriticalpartoftheenergy
landscapetosupportanorderlyenergytransitionthatisaffordable,reliable,andcompetitive.
4●
Low-carbonenergysourcesaresettogrow,butnotcurrentlyfastenoughtomeetnet-zerogoalsduetobusinesscaseviabilityandotherchallenges
Low-carbonenergysourcesareprojectedtogrow,accountingfor65to80percentofglobal
powergenerationby2050.However,thisgrowthisnotfastenoughundercurrentconditionsto
meetshort-termdeploymenttargets.Growthratesarealsoprojectedtodifferbytechnology.
Thosetechnologiesforwhichthelevelizedcostofenergy(LCOE)isalreadylowatthepointof
production,suchassolar,wind,andenergystoragesystems,areprojectedtocontinuetogrow,
whilethosewithhighercost—includinghydrogenandothersustainablefuels,andcarboncapture,utilization,andstorage(CCUS)—lacksufficientdemandandpolicysupportforstronggrowth.
Solarstandsoutwithparticularlystronggrowthprojections,whilehydrogengrowthto2050hasbeenreviseddownwardby10to25percentcomparedtopreviousestimatesduetohighercostprojections.Overall,low-carbonenergysourcesfaceseveralchallengesthatcouldthreatennet-zerogoals,andwhichareparticularlypronouncedforthosewithhigherLCOE.Weakbusiness
casesfornewinstallationswherefuturerevenuesandtechnologycostsareuncertainputtheprojectpipelineatrisk.Otherchallengesincluderisingcapitalcosts,longerprojecttimelines,andtheneedforgridbuild-out.Forinstance,intheEuropeanUnionandtheUnitedStates,alloperational,under-construction,andannouncedon-andoff-shorewindcapacitymaystillbe
200GWshortof2030targets.Overcomingthesehurdlescouldrequirethesupportofdurable
andflexiblepolicytofacilitatecontinueddeployment.Ouranalysissuggeststhatallelements—
includingrenewableenergy,otherlow-carbonenergysources,energyefficiencygains,andcarboncapture—willberequiredtoachievethegoalsofthetransitionwhileprovidingenergysecurity.
10GlobalEnergyPerspective2024
Keyinsightsfromouranalysis
Eightimportantinsightsflowfromouranalysisinthisyear’sGlobalEnergyPerspective
5
Nuclearcouldplayasignificant
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專利成果管理辦法
- 修建單位管理辦法
- 臨時食品管理辦法
- 停水停電管理辦法
- 縣級影院管理辦法
- 受托清收管理辦法
- 高校資產(chǎn)專項督查方案(3篇)
- 工會勞動安全培訓方案(3篇)
- 2025保密法考試題庫及答案
- 2025年國際禁毒日禁毒知識競賽題庫及答案(300題)
- 顧客特定要求CSR清單
- 公路養(yǎng)護安全管理辦法
- 醫(yī)療行風警示教育
- 電力采集系統(tǒng)培訓課件
- 服裝貿(mào)易公司策劃方案
- 醫(yī)保網(wǎng)絡安全培訓
- 老年急危重癥容量管理急診專家共識解讀
- 直腸癌放射治療進展講課件
- 丙酮安全管理制度
- JG/T 174-2014建筑鋁合金型材用聚酰胺隔熱條
- 胎膜早破的護理
評論
0/150
提交評論