北京衛(wèi)生職業(yè)學(xué)院《數(shù)據(jù)導(dǎo)入與預(yù)處理應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
北京衛(wèi)生職業(yè)學(xué)院《數(shù)據(jù)導(dǎo)入與預(yù)處理應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
北京衛(wèi)生職業(yè)學(xué)院《數(shù)據(jù)導(dǎo)入與預(yù)處理應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
北京衛(wèi)生職業(yè)學(xué)院《數(shù)據(jù)導(dǎo)入與預(yù)處理應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
北京衛(wèi)生職業(yè)學(xué)院《數(shù)據(jù)導(dǎo)入與預(yù)處理應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)北京衛(wèi)生職業(yè)學(xué)院

《數(shù)據(jù)導(dǎo)入與預(yù)處理應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)預(yù)處理中,處理異常值是重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含員工工資的數(shù)據(jù)集,以下關(guān)于異常值處理的描述,正確的是:()A.直接刪除異常值,不進(jìn)行任何進(jìn)一步的分析B.異常值一定是錯(cuò)誤的數(shù)據(jù),必須修正C.分析異常值產(chǎn)生的原因,根據(jù)具體情況決定處理方式D.異常值對(duì)數(shù)據(jù)分析沒(méi)有任何影響,無(wú)需關(guān)注2、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析消費(fèi)者的購(gòu)買行為與廣告投放之間的關(guān)聯(lián),數(shù)據(jù)量龐大且變量眾多。以下哪種關(guān)聯(lián)分析方法在處理這種復(fù)雜的商業(yè)數(shù)據(jù)時(shí)更能發(fā)現(xiàn)有價(jià)值的關(guān)聯(lián)規(guī)則?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上算法效果相同3、在數(shù)據(jù)分析的過(guò)程中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)你獲取了一份包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。以下關(guān)于數(shù)據(jù)清洗方法的選擇,哪一項(xiàng)是最為關(guān)鍵的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄,以保持?jǐn)?shù)據(jù)的簡(jiǎn)潔性B.采用均值或中位數(shù)來(lái)填充缺失值,不考慮數(shù)據(jù)的分布特征C.通過(guò)數(shù)據(jù)驗(yàn)證和邏輯檢查來(lái)修正錯(cuò)誤數(shù)據(jù),并去除重復(fù)記錄D.忽略數(shù)據(jù)中的問(wèn)題,直接進(jìn)行后續(xù)的分析4、在數(shù)據(jù)分析中,數(shù)據(jù)的歸一化和標(biāo)準(zhǔn)化是常見(jiàn)的操作。假設(shè)你有一個(gè)包含不同量綱特征的數(shù)據(jù)集,以下關(guān)于這兩種操作的作用,哪一項(xiàng)是最關(guān)鍵的?()A.使數(shù)據(jù)符合正態(tài)分布,便于進(jìn)行統(tǒng)計(jì)分析B.消除特征之間的量綱差異,使不同特征具有可比性C.增加數(shù)據(jù)的多樣性和復(fù)雜性D.沒(méi)有實(shí)際作用,可以忽略5、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,以下哪個(gè)原則有助于提高數(shù)據(jù)庫(kù)的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引6、在探索性數(shù)據(jù)分析(EDA)中,以下關(guān)于數(shù)據(jù)探索方法的描述,正確的是:()A.只查看數(shù)據(jù)的統(tǒng)計(jì)摘要,就能全面了解數(shù)據(jù)的特征B.繪制箱線圖可以直觀展示數(shù)據(jù)的分布和異常值情況C.相關(guān)性分析對(duì)于所有類型的數(shù)據(jù)都能得出明確的結(jié)論D.EDA只是初步步驟,對(duì)后續(xù)的深入分析沒(méi)有幫助7、數(shù)據(jù)分析中,數(shù)據(jù)可視化的作用不僅僅是美觀。以下關(guān)于數(shù)據(jù)可視化作用的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì)B.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率,減少分析時(shí)間和成本C.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力,使分析結(jié)果更容易被接受D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)分析報(bào)告看起來(lái)更漂亮,對(duì)分析結(jié)果沒(méi)有實(shí)質(zhì)性的幫助8、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,其中包含大量相關(guān)的特征,通過(guò)PCA進(jìn)行降維時(shí),以下哪個(gè)說(shuō)法是正確的?()A.降維后的主成分?jǐn)?shù)量一定少于原始特征數(shù)量B.主成分是原始特征的線性組合C.降維過(guò)程會(huì)丟失部分?jǐn)?shù)據(jù)信息D.以上都是9、數(shù)據(jù)分析中的異常檢測(cè)用于發(fā)現(xiàn)數(shù)據(jù)中的異常值或離群點(diǎn)。假設(shè)我們?cè)诜治錾a(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù),以下哪種異常檢測(cè)方法可能適用于檢測(cè)突然出現(xiàn)的質(zhì)量下降?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.以上都是10、數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中有著廣泛的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中的作用,不正確的是()A.可以幫助企業(yè)了解客戶的行為和偏好,進(jìn)行精準(zhǔn)的市場(chǎng)定位和目標(biāo)客戶篩選B.通過(guò)分析銷售數(shù)據(jù)和市場(chǎng)趨勢(shì),預(yù)測(cè)產(chǎn)品的需求,優(yōu)化庫(kù)存管理和供應(yīng)鏈C.數(shù)據(jù)分析只能用于評(píng)估營(yíng)銷活動(dòng)的效果,無(wú)法在活動(dòng)策劃階段提供有價(jià)值的建議D.基于數(shù)據(jù)分析的結(jié)果,企業(yè)可以制定個(gè)性化的營(yíng)銷策略,提高客戶滿意度和忠誠(chéng)度11、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)其他相關(guān)字段的值進(jìn)行推測(cè)和修正C.忽略重復(fù)記錄,因?yàn)樗鼈儗?duì)數(shù)據(jù)分析結(jié)果影響不大D.不進(jìn)行任何數(shù)據(jù)清洗操作,直接使用原始數(shù)據(jù)進(jìn)行分析12、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)和融合時(shí),需要確保數(shù)據(jù)的一致性和準(zhǔn)確性。假設(shè)你有來(lái)自不同系統(tǒng)的銷售數(shù)據(jù)和庫(kù)存數(shù)據(jù),要進(jìn)行關(guān)聯(lián)分析。以下關(guān)于數(shù)據(jù)關(guān)聯(lián)方法的選擇,哪一項(xiàng)是最需要注意的?()A.根據(jù)共同的主鍵或標(biāo)識(shí)符進(jìn)行精確匹配關(guān)聯(lián)B.使用模糊匹配算法,允許一定程度的差異進(jìn)行關(guān)聯(lián)C.不進(jìn)行任何預(yù)處理,直接將數(shù)據(jù)合并,期望自動(dòng)關(guān)聯(lián)D.隨機(jī)選擇一種關(guān)聯(lián)方法,不考慮數(shù)據(jù)的特點(diǎn)13、數(shù)據(jù)分析中,數(shù)據(jù)可視化的創(chuàng)新可以帶來(lái)更好的用戶體驗(yàn)。以下關(guān)于數(shù)據(jù)可視化創(chuàng)新的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化創(chuàng)新可以包括使用新的圖表類型、交互方式和可視化技術(shù)等B.數(shù)據(jù)可視化創(chuàng)新應(yīng)結(jié)合具體的問(wèn)題和數(shù)據(jù)特點(diǎn),不能為了創(chuàng)新而創(chuàng)新C.數(shù)據(jù)可視化創(chuàng)新可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性,增強(qiáng)數(shù)據(jù)的說(shuō)服力D.數(shù)據(jù)可視化創(chuàng)新只需要關(guān)注技術(shù)層面,不需要考慮用戶的需求和感受14、在數(shù)據(jù)分析中,預(yù)測(cè)模型的穩(wěn)定性和可靠性是重要的考慮因素。假設(shè)要評(píng)估一個(gè)預(yù)測(cè)模型在不同時(shí)間段和不同數(shù)據(jù)集上的表現(xiàn),以下關(guān)于模型穩(wěn)定性和可靠性的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)多次重復(fù)實(shí)驗(yàn)和交叉驗(yàn)證來(lái)評(píng)估模型的穩(wěn)定性B.模型在不同數(shù)據(jù)集上的性能差異較大,說(shuō)明模型的可靠性較低C.只要模型在訓(xùn)練集上表現(xiàn)良好,就可以認(rèn)為模型是穩(wěn)定和可靠的D.對(duì)模型進(jìn)行監(jiān)控和更新,以適應(yīng)數(shù)據(jù)的變化和新的業(yè)務(wù)需求15、在數(shù)據(jù)分析項(xiàng)目中,數(shù)據(jù)分析師需要與不同部門(mén)進(jìn)行溝通合作。以下關(guān)于跨部門(mén)溝通的描述,錯(cuò)誤的是:()A.明確各部門(mén)的需求和期望有助于提高合作效率B.數(shù)據(jù)分析師應(yīng)該主導(dǎo)整個(gè)項(xiàng)目,無(wú)需考慮其他部門(mén)的意見(jiàn)C.建立良好的溝通機(jī)制可以及時(shí)解決問(wèn)題和避免沖突D.理解不同部門(mén)的業(yè)務(wù)知識(shí)對(duì)于數(shù)據(jù)分析的結(jié)果應(yīng)用至關(guān)重要16、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以將來(lái)自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉(cāng)庫(kù)可以提供高效的數(shù)據(jù)查詢和分析功能C.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源17、在數(shù)據(jù)分析中,需要對(duì)缺失值進(jìn)行處理,例如在一個(gè)包含客戶信息的數(shù)據(jù)集里,部分客戶的年齡數(shù)據(jù)缺失。以下哪種處理缺失值的方法可能是合適的?()A.直接刪除包含缺失值的記錄B.用平均值或中位數(shù)填充C.根據(jù)其他相關(guān)變量進(jìn)行推測(cè)填充D.以上都是18、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的監(jiān)控是持續(xù)改進(jìn)數(shù)據(jù)質(zhì)量的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量監(jiān)控的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量監(jiān)控可以通過(guò)設(shè)置數(shù)據(jù)質(zhì)量指標(biāo)、定期檢查和預(yù)警等方式來(lái)實(shí)現(xiàn)B.數(shù)據(jù)質(zhì)量監(jiān)控應(yīng)覆蓋數(shù)據(jù)的采集、存儲(chǔ)、處理和使用等各個(gè)環(huán)節(jié)C.數(shù)據(jù)質(zhì)量監(jiān)控需要建立有效的反饋機(jī)制,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問(wèn)題D.數(shù)據(jù)質(zhì)量監(jiān)控只需要在數(shù)據(jù)倉(cāng)庫(kù)中進(jìn)行,其他數(shù)據(jù)源不需要進(jìn)行監(jiān)控19、在數(shù)據(jù)分析中,若要研究多個(gè)變量之間的非線性關(guān)系,以下哪種方法可能會(huì)被采用?()A.多項(xiàng)式回歸B.嶺回歸C.套索回歸D.以上都有可能20、對(duì)于數(shù)據(jù)預(yù)處理中的缺失值處理,以下方法中,可能會(huì)引入偏差的是:()A.用均值填充B.用中位數(shù)填充C.用眾數(shù)填充D.直接刪除包含缺失值的記錄21、在處理文本數(shù)據(jù)時(shí),除了常見(jiàn)的英文文本,還可能涉及到其他語(yǔ)言。假設(shè)我們要分析中文文本,以下哪個(gè)步驟在中文文本處理中可能與英文文本處理有所不同?()A.分詞B.詞干提取C.停用詞處理D.以上都是22、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的性能優(yōu)化是一個(gè)重要的問(wèn)題。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化可以提高數(shù)據(jù)查詢和分析的效率B.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化可以通過(guò)優(yōu)化數(shù)據(jù)存儲(chǔ)結(jié)構(gòu)、索引設(shè)計(jì)和查詢語(yǔ)句等方法來(lái)實(shí)現(xiàn)C.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化需要考慮數(shù)據(jù)的規(guī)模、復(fù)雜度和使用頻率等因素D.數(shù)據(jù)倉(cāng)庫(kù)性能優(yōu)化只需要關(guān)注硬件設(shè)備的升級(jí)和擴(kuò)展,無(wú)需考慮軟件方面的優(yōu)化23、在數(shù)據(jù)分析中,深度學(xué)習(xí)模型在處理復(fù)雜數(shù)據(jù)方面表現(xiàn)出色。假設(shè)我們要使用深度學(xué)習(xí)進(jìn)行圖像識(shí)別。以下關(guān)于深度學(xué)習(xí)在數(shù)據(jù)分析中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)是常用于圖像識(shí)別的深度學(xué)習(xí)模型B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源C.深度學(xué)習(xí)模型的訓(xùn)練過(guò)程簡(jiǎn)單,不需要進(jìn)行調(diào)優(yōu)和優(yōu)化D.深度學(xué)習(xí)可以與傳統(tǒng)的數(shù)據(jù)分析方法結(jié)合,提高分析效果24、在數(shù)據(jù)庫(kù)中,若要優(yōu)化查詢語(yǔ)句的執(zhí)行計(jì)劃,以下哪個(gè)工具或技術(shù)可以提供幫助?()A.索引分析工具B.執(zhí)行計(jì)劃查看器C.數(shù)據(jù)庫(kù)性能監(jiān)控工具D.以上都是25、在數(shù)據(jù)分析的聚類分析中,假設(shè)要將一組客戶根據(jù)其消費(fèi)行為和偏好進(jìn)行分組??蛻魯?shù)據(jù)包括購(gòu)買歷史、瀏覽記錄和評(píng)價(jià)等多維度信息。為了得到有意義且區(qū)分度高的聚類結(jié)果,以下哪種聚類算法可能表現(xiàn)更優(yōu)?()A.K-Means聚類,基于距離進(jìn)行分組B.層次聚類,構(gòu)建層次結(jié)構(gòu)C.密度聚類,基于數(shù)據(jù)的密度分布D.隨機(jī)將客戶分配到不同的組26、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架變得非常重要。假設(shè)你有數(shù)十億行的銷售數(shù)據(jù)需要進(jìn)行分析,以下關(guān)于分布式計(jì)算框架的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.考慮框架的易用性和學(xué)習(xí)成本,選擇容易上手的框架B.關(guān)注框架的性能和可擴(kuò)展性,能否處理大規(guī)模數(shù)據(jù)并快速得出結(jié)果C.選擇開(kāi)源且社區(qū)活躍的框架,以便獲取支持和資源D.依據(jù)公司已有的技術(shù)棧和團(tuán)隊(duì)熟悉程度來(lái)決定框架27、在數(shù)據(jù)倉(cāng)庫(kù)中,星型模型和雪花模型是常見(jiàn)的數(shù)據(jù)模型。以下關(guān)于這兩種模型的比較,錯(cuò)誤的是?()A.星型模型比雪花模型更易于理解B.雪花模型比星型模型更節(jié)省存儲(chǔ)空間C.星型模型的查詢效率通常高于雪花模型D.雪花模型比星型模型更適合復(fù)雜的業(yè)務(wù)需求28、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析29、在進(jìn)行數(shù)據(jù)抽樣時(shí),需要根據(jù)不同的目的選擇合適的抽樣方法。假設(shè)要對(duì)一個(gè)大型電商平臺(tái)的用戶購(gòu)買行為數(shù)據(jù)進(jìn)行抽樣,以估計(jì)總體的平均消費(fèi)金額,同時(shí)希望抽樣結(jié)果具有較好的代表性。以下哪種抽樣方法可能是最合適的?()A.簡(jiǎn)單隨機(jī)抽樣B.分層抽樣C.系統(tǒng)抽樣D.整群抽樣30、進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行分類。以下關(guān)于分類算法的描述,錯(cuò)誤的是:()A.決策樹(shù)算法易于理解和解釋B.支持向量機(jī)在處理高維數(shù)據(jù)時(shí)表現(xiàn)出色C.K近鄰算法對(duì)異常值不敏感D.樸素貝葉斯算法假設(shè)各個(gè)特征之間相互獨(dú)立二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)隨著智慧城市的建設(shè),城市各個(gè)系統(tǒng)產(chǎn)生了海量的數(shù)據(jù)。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像城市交通流量預(yù)測(cè)、資源分配優(yōu)化等,提升城市的運(yùn)行效率和居民生活質(zhì)量,同時(shí)思考在數(shù)據(jù)治理架構(gòu)、數(shù)據(jù)安全保障和跨部門(mén)協(xié)作方面的挑戰(zhàn)及應(yīng)對(duì)措施。2、(本題5分)在能源交易市場(chǎng)中,如何利用數(shù)據(jù)分析來(lái)預(yù)測(cè)價(jià)格走勢(shì)、評(píng)估市場(chǎng)風(fēng)險(xiǎn)和優(yōu)化交易策略?請(qǐng)深入探討數(shù)據(jù)的來(lái)源和處理方法,以及市場(chǎng)不確定性對(duì)分析結(jié)果的影響。3、(本題5分)人力資源管理中可以利用員工數(shù)據(jù)進(jìn)行績(jī)效評(píng)估、人才選拔和培訓(xùn)需求分析。論述如何運(yùn)用數(shù)據(jù)分析方法實(shí)現(xiàn)這些目標(biāo),以及如何確保數(shù)據(jù)的安全性和隱私保護(hù),同時(shí)分析數(shù)據(jù)分析在人力資源戰(zhàn)略制定中的支持作用。4、(本題5分)在金融風(fēng)險(xiǎn)管理中,壓力測(cè)試和情景分析需要基于數(shù)據(jù)分析。以某銀行為例,討論如何運(yùn)用數(shù)據(jù)分析來(lái)構(gòu)建壓力測(cè)試模型、評(píng)估極端情況下的風(fēng)險(xiǎn)承受能力、制定應(yīng)急預(yù)案,以及如何將壓力測(cè)試結(jié)果融入日常風(fēng)險(xiǎn)管理決策。5、(本題5分)旅游業(yè)積累了大量的游客出行數(shù)據(jù)和消費(fèi)數(shù)據(jù)。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像旅游目的地推薦模型、游客滿意度分析等,精準(zhǔn)定位旅游市場(chǎng)需求、優(yōu)化旅游產(chǎn)品設(shè)計(jì),促進(jìn)旅游業(yè)的發(fā)展,同時(shí)思考數(shù)據(jù)季節(jié)性波動(dòng)和地區(qū)差異性對(duì)分析結(jié)果的影響及應(yīng)對(duì)措施。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋數(shù)據(jù)分析師在數(shù)據(jù)驅(qū)動(dòng)決策中的作用,說(shuō)明如何通過(guò)數(shù)據(jù)分析為企業(yè)提供有價(jià)值的決策支持,并舉例說(shuō)明成功的案例。2、(本題5分)闡述數(shù)據(jù)挖掘中的關(guān)聯(lián)規(guī)則挖掘中的提升度和置信度的概念和作用,并舉例說(shuō)明如何根據(jù)這兩個(gè)指標(biāo)篩選有價(jià)值的關(guān)聯(lián)規(guī)則。3、(本題5分)闡述數(shù)據(jù)挖掘中的情感分析中的深度學(xué)習(xí)方法,如使用卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論