




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市榆樹市一中2022-2023學(xué)年下學(xué)期期末考試高三年級數(shù)學(xué)試題試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,當(dāng)時,()A. B. C. D.2.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)3.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-54.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.5.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢6.某校為提高新入聘教師的教學(xué)水平,實行“老帶新”的師徒結(jié)對指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.1207.已知函數(shù),若有2個零點,則實數(shù)的取值范圍為()A. B. C. D.8.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.29.在中,為中點,且,若,則()A. B. C. D.10.設(shè)集合,則()A. B.C. D.11.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點、,O為坐標(biāo)原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.312.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量服從正態(tài)分布,,則__________.14.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(不含端點),且滿足勾股定理,則______.15.某校初三年級共有名女生,為了了解初三女生分鐘“仰臥起坐”項目訓(xùn)練情況,統(tǒng)計了所有女生分鐘“仰臥起坐”測試數(shù)據(jù)(單位:個),并繪制了如下頻率分布直方圖,則分鐘至少能做到個仰臥起坐的初三女生有_____________個.16.若,則的展開式中含的項的系數(shù)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.18.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實數(shù)、滿足,求證:.19.(12分)若關(guān)于的方程的兩根都大于2,求實數(shù)的取值范圍.20.(12分)在平面直角坐標(biāo)系中,已知點,曲線:(為參數(shù))以原點為極點,軸正半軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)判斷點與直線的位置關(guān)系并說明理由;(Ⅱ)設(shè)直線與曲線的兩個交點分別為,,求的值.21.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)向量的坐標(biāo)運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標(biāo)運算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.2.D【解析】
求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補(bǔ)集的定義寫出運算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點睛】該題考查的是有關(guān)集合的問題,涉及到的知識點有函數(shù)的定義域,函數(shù)的值域,集合的運算,屬于基礎(chǔ)題目.3.C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.4.A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復(fù),重復(fù)數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎(chǔ)題5.D【解析】
根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點睛】本題考查了折線圖,意在考查學(xué)生的理解能力.6.C【解析】
可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.7.C【解析】
令,可得,要使得有兩個實數(shù)解,即和有兩個交點,結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數(shù)解,即和有兩個交點,,令,可得,當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減.當(dāng)時,,若直線和有兩個交點,則.實數(shù)的取值范圍是.故選:C.【點睛】本題主要考查了根據(jù)零點求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點個數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計算能力,屬于中檔題.8.B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.9.B【解析】
選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎(chǔ)題.10.B【解析】
直接進(jìn)行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎(chǔ)題.11.C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;12.D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.0.22.【解析】
正態(tài)曲線關(guān)于x=μ對稱,根據(jù)對稱性以及概率和為1求解即可?!驹斀狻俊军c睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎(chǔ)題.14.【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點睛】本題考查向量的數(shù)量積,重點考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.15.【解析】
根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個仰臥起坐的初三女生人數(shù)為.故答案為:.【點睛】本題主要考查頻率分布直方圖,屬于基礎(chǔ)題.16.【解析】
首先根據(jù)定積分的應(yīng)用求出的值,進(jìn)一步利用二項式的展開式的應(yīng)用求出結(jié)果.【詳解】,根據(jù)二項式展開式通項:,令,解得,所以含的項的系數(shù).故答案為:【點睛】本題考查定積分,二項式的展開式的應(yīng)用,主要考查學(xué)生的運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)2;(2)見解析【解析】
(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點睛】本題考查基本不等式的應(yīng)用,利用基本不等式和放縮法求最值,考查化簡計算能力.18.(1);(2)見解析.【解析】
(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時,由,得,即,解得,此時;當(dāng)時,由,得,即,解得,此時;當(dāng)時,由,得,即,解得,此時.綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時取等號,所以,.所以,當(dāng)且僅當(dāng),即,時等號成立,所以.所以,即.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式成立,涉及絕對值三角不等式的應(yīng)用,考查運算求解能力,屬于中等題.19.【解析】
先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因為關(guān)于的方程的兩根都大于2,令所以有,解得,所以.【點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于常考題型.20.(Ⅰ)點在直線上;見解析(Ⅱ)【解析】
(Ⅰ)直線:,即,所以直線的直角坐標(biāo)方程為,因為,所以點在直線上;(Ⅱ)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標(biāo)方程為,因為,所以點在直線上;(Ⅱ)直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,將直線的參數(shù)方程代入曲線的普通方程得,設(shè)兩根為,,所以,,故與異號,所以,,所以.【點睛】本題考查在極坐標(biāo)參數(shù)方程中方程互化,還考查了直線的參數(shù)方程中參數(shù)的幾何意義,屬于中檔題.21.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調(diào)性.22.(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導(dǎo)函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設(shè),通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因為,所以當(dāng)時,在上恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基底節(jié)解剖課件
- 交互電視數(shù)據(jù)業(yè)務(wù)的演進(jìn)與終端接收算法的創(chuàng)新研究
- 中國收入不平等倒U問題再審視:基于三種估計方法的實證探究
- RUNX3與小檗堿:胃癌治療的新曙光-基于基因調(diào)控與細(xì)胞增殖凋亡機(jī)制的探究
- 基層監(jiān)管所培訓(xùn)課件
- 基層應(yīng)急知識培訓(xùn)課件
- 新解讀《GB-T 34953.4-2020信息技術(shù) 安全技術(shù) 匿名實體鑒別 第4部分:基于弱秘密的機(jī)制》
- 培訓(xùn)課件準(zhǔn)備
- 家政按摩考試題及答案
- 合理碰撞測試題及答案
- 10kV小區(qū)供配電設(shè)計、采購、施工EPC 投標(biāo)方案(技術(shù)方案)
- 賁門縮窄術(shù)后的護(hù)理
- 《學(xué)生是如何學(xué)習(xí)的:從學(xué)習(xí)科學(xué)到高效教學(xué)》札記
- 2024年浙江省單獨考試招生文化考試語文試卷真題(含答案詳解)
- 人教版初一數(shù)學(xué)上冊預(yù)習(xí)資料
- 2024年初中英語教師進(jìn)城考試模擬試卷(含答案)
- CJ/T 133-2012 IC卡冷水水表 標(biāo)準(zhǔn)
- SL+258-2017水庫大壩安全評價導(dǎo)則
- 電力系統(tǒng)經(jīng)濟(jì)學(xué)原理(第2版) 課件 第4、5章 電力市場主體行為、輸電網(wǎng)與電力市場
- 樓板下加鋼梁加固施工方案
- 食堂食材配送服務(wù)應(yīng)急預(yù)案
評論
0/150
提交評論