濮陽職業(yè)技術(shù)學(xué)院《機(jī)器視覺技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
濮陽職業(yè)技術(shù)學(xué)院《機(jī)器視覺技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
濮陽職業(yè)技術(shù)學(xué)院《機(jī)器視覺技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
濮陽職業(yè)技術(shù)學(xué)院《機(jī)器視覺技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
濮陽職業(yè)技術(shù)學(xué)院《機(jī)器視覺技術(shù)課程設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁,共3頁濮陽職業(yè)技術(shù)學(xué)院《機(jī)器視覺技術(shù)課程設(shè)計(jì)》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的顯著性檢測(cè)旨在找出圖像中引人注目的區(qū)域。假設(shè)要在一張復(fù)雜的自然風(fēng)景圖像中檢測(cè)顯著性區(qū)域,以下關(guān)于顯著性檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于對(duì)比度的方法通過計(jì)算圖像區(qū)域與周圍區(qū)域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學(xué)習(xí)方法能夠?qū)W習(xí)圖像的全局和局部特征,實(shí)現(xiàn)更準(zhǔn)確的顯著性檢測(cè)D.顯著性檢測(cè)的結(jié)果總是與人類的視覺注意力機(jī)制完全一致,沒有偏差2、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中的人體動(dòng)作進(jìn)行分類和理解。假設(shè)我們要分析一段體育比賽的視頻,識(shí)別其中運(yùn)動(dòng)員的各種動(dòng)作,以下哪種方法能夠有效地捕捉動(dòng)作的時(shí)空特征?()A.基于手工特征和分類器的方法B.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)C.基于光流和軌跡的方法D.基于隱馬爾可夫模型的方法3、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度不同的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于特征匹配的方法,哪一項(xiàng)是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進(jìn)行匹配B.基于像素值的直接比較進(jìn)行匹配C.利用SURF(SpeededUpRobustFeatures)特征進(jìn)行匹配D.通過ORB(OrientedFASTandRotatedBRIEF)特征進(jìn)行匹配4、計(jì)算機(jī)視覺中的行人檢測(cè)是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個(gè)擁擠的公共場(chǎng)所中準(zhǔn)確檢測(cè)出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測(cè)方法在這種復(fù)雜環(huán)境下具有更高的檢測(cè)率和較低的誤檢率?()A.基于HOG特征的行人檢測(cè)B.基于深度學(xué)習(xí)的行人檢測(cè)C.基于運(yùn)動(dòng)信息的行人檢測(cè)D.基于形狀模板的行人檢測(cè)5、計(jì)算機(jī)視覺中的圖像語義分割需要為圖像中的每個(gè)像素分配類別標(biāo)簽。假設(shè)要對(duì)一張城市街景圖像進(jìn)行語義分割,包括道路、建筑物、車輛和行人等。以下哪種圖像語義分割方法在處理這種復(fù)雜場(chǎng)景時(shí)能夠提供更精細(xì)的分割結(jié)果?()A.全卷積網(wǎng)絡(luò)(FCN)B.U-NetC.SegNetD.DeepLab6、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個(gè)大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果7、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時(shí)保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時(shí),提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP8、在計(jì)算機(jī)視覺的行人檢測(cè)任務(wù)中,假設(shè)要在一個(gè)擁擠的街道場(chǎng)景中準(zhǔn)確檢測(cè)出行人,場(chǎng)景中存在光照變化、人群遮擋和復(fù)雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學(xué)習(xí)的特征,通過卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)學(xué)習(xí)D.不提取任何特征,直接對(duì)原始圖像進(jìn)行檢測(cè)9、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度和時(shí)間不同的同一物體的圖像進(jìn)行精確對(duì)齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準(zhǔn)方法可能更適合處理這種情況?()A.基于特征點(diǎn)匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進(jìn)行任何配準(zhǔn)操作C.基于圖像灰度值的配準(zhǔn)方法,計(jì)算灰度差異D.隨機(jī)選擇圖像中的點(diǎn)進(jìn)行匹配10、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,需要從車輛圖像中準(zhǔn)確提取車牌號(hào)碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識(shí)別方法在應(yīng)對(duì)這些挑戰(zhàn)時(shí)表現(xiàn)更為出色?()A.基于字符分割的車牌識(shí)別B.基于模板匹配的車牌識(shí)別C.基于深度學(xué)習(xí)的車牌識(shí)別D.基于特征提取的車牌識(shí)別11、圖像分類是計(jì)算機(jī)視覺的常見任務(wù)之一。假設(shè)要對(duì)大量的自然風(fēng)景圖片進(jìn)行分類,如山脈、森林、海灘等。在進(jìn)行圖像分類時(shí),以下關(guān)于數(shù)據(jù)增強(qiáng)的方法,哪一項(xiàng)可能不太有效?()A.對(duì)圖像進(jìn)行隨機(jī)裁剪和旋轉(zhuǎn),增加數(shù)據(jù)的多樣性B.改變圖像的色彩和對(duì)比度,模擬不同的拍攝條件C.直接復(fù)制原圖像,增加數(shù)據(jù)量D.給圖像添加隨機(jī)噪聲,增強(qiáng)模型的魯棒性12、視頻分析是計(jì)算機(jī)視覺的一個(gè)重要領(lǐng)域。假設(shè)要對(duì)一段監(jiān)控視頻中的行為進(jìn)行分析和理解,以下關(guān)于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨(dú)立的圖像進(jìn)行處理,就能準(zhǔn)確分析視頻中的行為B.考慮視頻的時(shí)序信息和幀間的相關(guān)性對(duì)于理解復(fù)雜的行為非常重要C.視頻分析只適用于簡(jiǎn)單的動(dòng)作識(shí)別,對(duì)于復(fù)雜的多人物交互行為無法處理D.視頻的分辨率和幀率對(duì)視頻分析的結(jié)果沒有影響13、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,持續(xù)跟蹤視頻中的特定目標(biāo)。假設(shè)要跟蹤一個(gè)在人群中行走的人,以下關(guān)于目標(biāo)跟蹤方法的描述,哪一項(xiàng)是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預(yù)測(cè)目標(biāo)的位置和狀態(tài)B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)目標(biāo)的外觀特征,提高跟蹤的準(zhǔn)確性和魯棒性C.目標(biāo)跟蹤過程中,目標(biāo)的外觀變化、遮擋和背景干擾等因素不會(huì)對(duì)跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢(shì),提高跟蹤性能14、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型15、在計(jì)算機(jī)視覺的行人重識(shí)別任務(wù)中,即在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人,假設(shè)行人的姿態(tài)和服裝發(fā)生了較大變化,以下哪種特征可能具有更強(qiáng)的魯棒性?()A.基于全局特征的描述B.基于局部特征的描述C.基于顏色特征的描述D.基于形狀特征的描述16、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個(gè)特定的目標(biāo)。假設(shè)要跟蹤一個(gè)在運(yùn)動(dòng)場(chǎng)上快速移動(dòng)且形狀變化的運(yùn)動(dòng)員,同時(shí)存在其他相似物體的干擾。以下哪種目標(biāo)跟蹤算法在這種具有挑戰(zhàn)性的場(chǎng)景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C(jī).基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤17、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要對(duì)細(xì)胞圖像進(jìn)行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項(xiàng)是不準(zhǔn)確的?()A.模型對(duì)細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時(shí)間和計(jì)算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)18、計(jì)算機(jī)視覺中的場(chǎng)景理解需要從圖像中推斷出物體之間的關(guān)系和場(chǎng)景的語義信息。假設(shè)要理解一張室內(nèi)辦公室場(chǎng)景的圖像,包括家具的布局、人員的活動(dòng)等。以下哪種方法在進(jìn)行場(chǎng)景理解時(shí)最為有效?()A.基于對(duì)象檢測(cè)和分類的方法B.基于圖模型的場(chǎng)景表示C.基于深度學(xué)習(xí)的場(chǎng)景解析D.基于規(guī)則推理的方法19、當(dāng)利用計(jì)算機(jī)視覺進(jìn)行圖像分類任務(wù),例如區(qū)分不同種類的動(dòng)物圖片,為了提高模型的泛化能力和防止過擬合,以下哪種技術(shù)可能是有效的?()A.數(shù)據(jù)增強(qiáng)B.正則化C.模型融合D.以上都是20、在計(jì)算機(jī)視覺的視覺跟蹤與定位任務(wù)中,實(shí)時(shí)跟蹤物體并確定其在空間中的位置。假設(shè)要在一個(gè)室內(nèi)環(huán)境中跟蹤一個(gè)移動(dòng)的機(jī)器人并確定其位置,以下關(guān)于視覺跟蹤與定位方法的描述,正確的是:()A.基于標(biāo)志物的跟蹤與定位方法在標(biāo)志物被遮擋時(shí)仍能準(zhǔn)確工作B.視覺里程計(jì)方法能夠獨(dú)立實(shí)現(xiàn)高精度的長(zhǎng)期跟蹤與定位C.同時(shí)使用多個(gè)相機(jī)進(jìn)行觀測(cè)不能提高跟蹤與定位的性能D.環(huán)境的光照變化和動(dòng)態(tài)障礙物對(duì)視覺跟蹤與定位的結(jié)果影響較小21、在計(jì)算機(jī)視覺中,深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的距離。以下關(guān)于深度估計(jì)的說法,錯(cuò)誤的是()A.可以通過立體視覺、結(jié)構(gòu)光或飛行時(shí)間等技術(shù)來獲取深度信息B.深度學(xué)習(xí)方法在單目深度估計(jì)中取得了顯著進(jìn)展C.深度估計(jì)對(duì)于三維重建、虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用具有重要意義D.深度估計(jì)的結(jié)果總是非常精確,不需要進(jìn)行后處理和優(yōu)化22、在計(jì)算機(jī)視覺的圖像風(fēng)格遷移任務(wù)中,假設(shè)要將一張照片轉(zhuǎn)換為具有特定藝術(shù)風(fēng)格的圖像,以下哪種技術(shù)可能對(duì)生成逼真的風(fēng)格效果起到關(guān)鍵作用?()A.對(duì)抗生成網(wǎng)絡(luò)(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(jī)(BoltzmannMachine)23、計(jì)算機(jī)視覺中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對(duì)一個(gè)古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過立體視覺的方法,從不同角度拍攝的圖像中計(jì)算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點(diǎn)云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實(shí)物體的形狀完全一致24、計(jì)算機(jī)視覺中的圖像配準(zhǔn)任務(wù)是將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的城市風(fēng)景照片進(jìn)行配準(zhǔn)。以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征點(diǎn)匹配的方法,找到兩張圖像中的對(duì)應(yīng)點(diǎn),然后計(jì)算變換矩陣B.基于灰度信息的配準(zhǔn)方法通過比較圖像的像素值來實(shí)現(xiàn)配準(zhǔn)C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法可以用于圖像配準(zhǔn),自動(dòng)學(xué)習(xí)圖像之間的對(duì)應(yīng)關(guān)系D.圖像配準(zhǔn)總是能夠達(dá)到像素級(jí)別的精確對(duì)齊,不存在任何誤差25、在計(jì)算機(jī)視覺的姿態(tài)估計(jì)任務(wù)中,例如估計(jì)人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實(shí)時(shí)性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是26、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別是對(duì)視頻中人物或物體的動(dòng)作進(jìn)行分類和識(shí)別。以下關(guān)于動(dòng)作識(shí)別的描述,不準(zhǔn)確的是()A.動(dòng)作識(shí)別需要分析視頻中的時(shí)空特征來理解動(dòng)作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動(dòng)作識(shí)別任務(wù)中被廣泛應(yīng)用,分別處理空間和時(shí)間信息C.動(dòng)作識(shí)別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價(jià)值D.動(dòng)作識(shí)別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識(shí)別各種復(fù)雜和細(xì)微的動(dòng)作27、假設(shè)要開發(fā)一個(gè)能夠在低光照條件下清晰拍攝并處理圖像的計(jì)算機(jī)視覺系統(tǒng),以下哪種圖像增強(qiáng)方法可能有助于改善圖像質(zhì)量?()A.直方圖均衡化B.伽馬校正C.暗通道先驗(yàn)去霧D.以上都是28、人臉識(shí)別是計(jì)算機(jī)視覺的一個(gè)重要應(yīng)用。假設(shè)一個(gè)公司使用人臉識(shí)別系統(tǒng)進(jìn)行員工考勤。以下關(guān)于人臉識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.它可以通過提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來進(jìn)行身份識(shí)別B.能夠適應(yīng)不同的表情、姿態(tài)和光照變化,保持較高的識(shí)別準(zhǔn)確率C.人臉識(shí)別系統(tǒng)的安全性極高,不存在被欺騙或誤識(shí)別的可能性D.深度學(xué)習(xí)模型在人臉識(shí)別中表現(xiàn)出色,大大提高了識(shí)別性能29、對(duì)于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場(chǎng)景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡(jiǎn)單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測(cè)圖像的語義30、在計(jì)算機(jī)視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對(duì)一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個(gè)特性使其在這種情況下表現(xiàn)出色?()A.對(duì)旋轉(zhuǎn)和尺度變化具有不變性B.計(jì)算速度快,效率高C.特征維度低,易于存儲(chǔ)和處理D.對(duì)光照變化不敏感二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)開發(fā)一個(gè)能夠識(shí)別不同種類昆蟲幼蟲的計(jì)算機(jī)視覺系統(tǒng)。2、(本題5分)使用目標(biāo)跟蹤算法,對(duì)馬拉松比賽中的運(yùn)動(dòng)員進(jìn)行實(shí)時(shí)排名和速度估算。3、(本題5分)運(yùn)用深度學(xué)習(xí)模型,對(duì)古代書法作品的作者和流派進(jìn)行鑒定。4、(本題5分)基于計(jì)算機(jī)視覺的智能商場(chǎng)導(dǎo)航系統(tǒng),通過實(shí)時(shí)圖像識(shí)別為顧客提供導(dǎo)航。5、(本題5分)利用圖像分割技術(shù),從醫(yī)學(xué)X光片中分割出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論