




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第05章重點(diǎn)突破訓(xùn)練:相交線平行線類型題舉例典例體系(本專題99題123頁)考點(diǎn)1:相交線所成的角典例:(2022春·湖北荊州·七年級(jí)統(tǒng)考期末)如圖,直線AB,CD相交于點(diǎn)O,OB平分∠EOD.(1)若∠BOD=30°,求∠EOC的度數(shù);(2)若∠BOD∶∠EOC=1∶3,求∠AOD的度數(shù);(3)在(2)的條件下,畫射線OF,若∠COF=90°,請(qǐng)直接寫出∠BOF的度數(shù).【答案】(1)(2)(3)的度數(shù)為或【分析】(1)先根據(jù)角平分線的定義可得,再根據(jù)平角的定義即可得;(2)先根據(jù)可得,再根據(jù)平角的定義可得,然后根據(jù)鄰補(bǔ)角的定義即可得;(3)分兩種情況討論:①射線在的上方和②射線在的下方,先利用平角的定義可得,再根據(jù)角的和差即可得.(1)解:因?yàn)槠椒?,,所以,所以.?)解:因?yàn)椋?,因?yàn)?,所以,所以,所以.?)解:由題意,分以下兩種情況:①如圖,當(dāng)射線在的上方時(shí),因?yàn)椋?,所以;②如圖,當(dāng)射線在的下方時(shí),因?yàn)椋裕?,綜上,的度數(shù)為或.方法或規(guī)律點(diǎn)撥本題考查了與角平分線有關(guān)的計(jì)算、鄰補(bǔ)角、平角,熟練掌握角平分線的運(yùn)算是解題關(guān)鍵.鞏固練習(xí)1.(2022秋·河北邢臺(tái)·七年級(jí)統(tǒng)考期末)如圖,直線AB,CD相交于點(diǎn)O,射線OM平分∠AOC,若∠BOD=80°,則∠BOM等于(
)A.40° B.80° C.100° D.140°【答案】D【分析】根據(jù)對(duì)頂角相等和平角的定義即可求出∠AOC和∠BOC,然后根據(jù)角平分線的定義即可求出∠COM,從而求出結(jié)論.【詳解】解:∵∴∠AOC=∠BOD=80°,∠BOC=180°-∠BOD=100°∵平分∴∠COM=∠AOC=40°∴∠BOM=∠COM+∠BOC=140°故選:D.【點(diǎn)睛】此題考查的是角的和與差,掌握對(duì)頂角相等、平角的定義和角平分線的定義是解決此題的關(guān)鍵.2.(2022春·七年級(jí)單元測試)如圖,直線、、相交于點(diǎn),且,平分,若,則的度數(shù)為(
)A. B. C. D.無法確定【答案】B【分析】根據(jù)對(duì)頂角相等可以得到,再根據(jù)垂直的性質(zhì)可以得到,即可求出的度數(shù),再根據(jù)角平分線的定義即可得出答案.【詳解】解:∵,∴∵,∴∴∵平分,∴故選B.【點(diǎn)睛】本題考查了角度的和差倍分,垂直的定義,角平分線的定義,熟練掌握以上性質(zhì)并找出角度之間的關(guān)系是本題的關(guān)鍵.3.(2022秋·湖南湘西·七年級(jí)統(tǒng)考期末)如圖,直線a,b相交于點(diǎn)O,如果,那么是____________°.【答案】145【分析】根據(jù)對(duì)頂角相等求出∠1,再根據(jù)互為鄰補(bǔ)角的兩個(gè)角的和等于180°列式計(jì)算即可得解.【詳解】解:∵,(對(duì)頂角相等),∴,∵∠1與∠3互為鄰補(bǔ)角,∴.故答案為:.【點(diǎn)睛】本題考查了對(duì)頂角相等的性質(zhì),鄰補(bǔ)角的定義,是基礎(chǔ)題,熟記概念與性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.4.(2022春·江蘇·七年級(jí)專題練習(xí))如圖,直線與相交于點(diǎn)O,.(1)如果,求和的度數(shù);(2)如果,求的度數(shù).【答案】(1);(2)【分析】(1)根據(jù)角的和差與對(duì)頂角即可求解;(2)根據(jù)已知條件可得,從而可求得,根據(jù)鄰補(bǔ)角即可求的度數(shù).【詳解】(1)∵,∴,∵與是對(duì)頂角,∴.(2)∵,∴.又∵,∴,∴,∴.【點(diǎn)睛】本題考查了對(duì)頂角,鄰補(bǔ)角,以及角的和差計(jì)算,解答的關(guān)鍵是熟記對(duì)頂角與鄰補(bǔ)角的定義的掌握與應(yīng)用.5.(2022秋·重慶·七年級(jí)校聯(lián)考階段練習(xí))如圖,直線,相交于點(diǎn)O,平分,平分.(1)判斷與的位置關(guān)系,并進(jìn)行證明.(2)若,求的度數(shù).【答案】(1),證明見解析(2)【分析】(1)由平分,平分,得到,,根據(jù)鄰補(bǔ)角互補(bǔ)可得出,進(jìn)而可得出,由此即可證出;(2)由,,得到,由對(duì)頂角相等,可求出,根據(jù)平分,平分,可得出以及,根據(jù)鄰補(bǔ)角互補(bǔ)結(jié)合,可求出的度數(shù).【詳解】(1).證明:∵平分,平分,∴,,∵,∴,∴.(2)∵,,∴,∴,∵,∴,∵平分,平分,∴,.∵,∴,∴.【點(diǎn)睛】本題考查了對(duì)頂角相等,鄰補(bǔ)角互補(bǔ),角平分線的定義,熟練掌握知識(shí)點(diǎn)是解題的關(guān)鍵.6.(2021春·湖北荊州·七年級(jí)統(tǒng)考期末)如圖,O是直線AB上一點(diǎn),平分.(1)若,請(qǐng)求出的度數(shù);(2)若和互余,且,請(qǐng)求出的度數(shù).【答案】(1)(2)【分析】(1)根據(jù)角平分線的定義,即可求得;(2)首先根據(jù)和互余,可得,再根據(jù),可求得,可求得,據(jù)此即可求得.(1)解:,平分,,;(2)解:和互余,,∴,平分,,.【點(diǎn)睛】本題考查了與角平分線有關(guān)的計(jì)算,準(zhǔn)確找到角與角之間的關(guān)系是解決本題的關(guān)鍵.7.(2022·全國·七年級(jí)專題練習(xí))如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度數(shù);(2)若∠BOF=36°,求∠AOC的度數(shù);【答案】(1)∠BOF=33°(2)∠AOC=72°【分析】(1)先根據(jù)對(duì)頂角相等求出∠BOD=76°,再由角平分線定義得∠DOE=∠BOE=38°,由鄰補(bǔ)角得∠COE=142°,再根據(jù)角平分線定義得∠EOF=71°,從而可得結(jié)論.(2)利用角平分的定義得出,進(jìn)而表示出各角求出答案.【詳解】(1)∵∠AOC、∠BOD是對(duì)頂角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=38°∴∠COE=142°,∵OF平分∠COE.∴∠EOF=∠COE=71°,又∠BOE+∠BOF=∠EOF,∴∠BOF=∠EOF?∠BOE=71°?38°=33°,(2)∵OE平分∠BOD,OF平分∠COE,∴,∴設(shè),則,故,,則,解得,故∠AOC=72°.【點(diǎn)睛】本題考查了角平分線的定義和對(duì)頂角的性質(zhì),解決本題的關(guān)鍵是掌握對(duì)頂角的定義(從一個(gè)角的頂點(diǎn)引出一條射線,把這個(gè)角分成兩個(gè)完全相同的角,這條射線叫做這個(gè)角的角平分線).8.(2022春·廣東湛江·九年級(jí)??计谥校┤鐖D,已知O為直線上一點(diǎn),過點(diǎn)O向直線上引三條射線,且平分.(1)若平分,求的度數(shù);(2)若,,求的度數(shù).【答案】(1)(2)【分析】(1)利用角平分線的定義,可證得,,再根據(jù)鄰補(bǔ)角的定義,就可求出的度數(shù).(2)根據(jù)已知及角平分線的定義,用含的代數(shù)式表示出,再根據(jù),建立關(guān)于的方程,求解即可.(1)解:∵平分,OE平分∠BOC,∴,,∵∴答:的度數(shù)為.(2)解:∵,∴∵平分∴∵∴解之:答:的度數(shù)為.【點(diǎn)睛】本題考查了角平分線定義、平角以及角的計(jì)算等知識(shí),熟練掌握角平分線定義是解題的關(guān)鍵.9.(2022秋·福建龍巖·七年級(jí)??茧A段練習(xí))如圖,直線AB、CD相交于點(diǎn)O,∠DOE=∠BOD,OF平分∠AOE.(1)判斷OF與OD的位置關(guān)系,并說明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度數(shù).【答案】(1)OF⊥OD,理由見解析;(2)∠EOF=60°【分析】(1)利用角平分線的定義結(jié)合已知求出∠FOD=90°即可得出答案;(2)求出∠AOC的度數(shù),再利用對(duì)頂角的性質(zhì)和角平分線的定義求出∠BOD=∠AOC=∠EOD=30°,進(jìn)而得出∠EOF的度數(shù).(1)解:OF⊥OD,理由:∵OF平分∠AOE,∴∠AOF=∠FOE,∵∠DOE=∠BOD,∴∠AOF+∠BOD=∠FOE+∠DOE=×180°=90°,即∠FOD=90°,∴OF與OD的位置關(guān)系是OF⊥OD;(2)∵∠AOC:∠AOD=1:5,∴∠AOC=×180°=30°,∴∠BOD=∠AOC=∠EOD=30°,∴∠AOE=120°,∴∠EOF=∠AOE=60°.【點(diǎn)睛】此題主要考查了角平分線的定義以及鄰補(bǔ)角的性質(zhì),正確得出各角之間的關(guān)系是解題關(guān)鍵.10.(2022春·七年級(jí)課時(shí)練習(xí))如圖,直線AB,CD相交于點(diǎn)O,OB平分∠EOD.(1)若∠BOE:∠EOC=1:4,求∠AOC的度數(shù);(2)在(1)的條件下,畫OF⊥CD,請(qǐng)直接寫出∠EOF的度數(shù).【答案】(1)(2)或【分析】(1)設(shè),則,先根據(jù)角平分線的定義可得,,再根據(jù)鄰補(bǔ)角的定義求出的值,從而可得的度數(shù),然后根據(jù)對(duì)頂角相等即可得;(2)先求出,再分①點(diǎn)在的上方和②點(diǎn)在的下方兩種情況,根據(jù)角的和差即可得.【詳解】(1)解:由題意,設(shè),則,平分,,,,,解得,,由對(duì)頂角相等得:.(2)解:由(1)可知,,,,由題意,分以下兩種情況:①如圖,當(dāng)點(diǎn)在的上方時(shí),則;②如圖,當(dāng)點(diǎn)在的下方時(shí),則;綜上,的度數(shù)為或.【點(diǎn)睛】本題考查了與角平分線有關(guān)的計(jì)算、對(duì)頂角相等、一元一次方程的應(yīng)用,較難的是題(2),正確分兩種情況討論是解題關(guān)鍵.11.(2022秋·山東濟(jì)寧·七年級(jí)統(tǒng)考期末)如圖,直線AB,CD相交于點(diǎn)O,∠BOC=80°,OE是∠BOC的平分線,OF是OE的反向延長線.(1)求∠2、∠3的度數(shù);(2)說明OF平分∠AOD的理由.【答案】(1)∠2=100°,∠3=40°(2)理由見詳解【分析】(1)根據(jù)鄰補(bǔ)角的性質(zhì),得∠2=180°﹣80°=100°,再求出∠AOD的度數(shù),根據(jù)角平分線的性質(zhì)求出∠3;(2)根據(jù)對(duì)頂角相等以及角平分線的定義得出∠AOF=∠DOF即可.(1)解:∵∠2和∠BOC互為補(bǔ)角,且∠BOC=80°,∴∠2=180°﹣80°=100°,∵OE是∠EOC的平分線,∴∠1=∠EOC=∠BOC=40°,∵OF是OE的反向延長線,∴∠3=∠EOC=40°,(2)理由如下:由(1)得∠3=∠EOC=40°,又∵∠AOF=∠1=40°,∴∠AOF=∠DOF,∴OF平分∠AOD.【點(diǎn)睛】本題考查角平分線的定義,對(duì)頂角、鄰補(bǔ)角,理解角平分線的定義,掌握對(duì)頂角相等以及鄰補(bǔ)角的性質(zhì)是解題的關(guān)鍵.12.(2022秋·湖北孝感·七年級(jí)統(tǒng)考期中)如圖,直線與相交于點(diǎn),.(1)若,判斷與的位置關(guān)系,并證明;(2)若,求的度數(shù).【答案】(1)(2)【分析】(1)根據(jù)垂直的定義求解即可;(2)根據(jù)角的和差及“對(duì)頂角相等”求解即可.(1),理由如下:,,,,,即,;(2),,,,,,.【點(diǎn)睛】此題考查了對(duì)頂角、鄰補(bǔ)角,熟記對(duì)頂角、鄰補(bǔ)角的概念是解題的關(guān)鍵.13.(2022春·陜西安康·七年級(jí)統(tǒng)考期末)如圖,點(diǎn)在直線上,與互補(bǔ),平分.(1)若,則的度數(shù)為______;(2)若,求的度數(shù).【答案】(1)(2)【分析】(1)根據(jù)互補(bǔ)的定義,鄰補(bǔ)角以及角平分線的定義解答即可;(2)根據(jù)互補(bǔ)的定義和角平分線的定義列出方程解答即可.(1)解:∵點(diǎn)在直線上,,∴,∵與互補(bǔ),∴,∵平分,∴,∴.故答案為:.(2)設(shè)為x,∵點(diǎn)在直線上,∴與互補(bǔ),∵與互補(bǔ),∴,∵平分,∴,∴,∵與互補(bǔ),即,,解得:,∴.∴的度數(shù)為.【點(diǎn)睛】本題考查補(bǔ)角問題,涉及互補(bǔ)的定義,鄰補(bǔ)角,等角的補(bǔ)角相等,角平分線的定義.理解和掌握互補(bǔ)的定義,鄰補(bǔ)角以及角平分線的定義是解題的關(guān)鍵.14.(2022春·七年級(jí)課時(shí)練習(xí))如圖1,點(diǎn)為直線上一點(diǎn),過點(diǎn)作射線,使.將一直角三角板的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊在直線的下方.(1)將圖1中的三角板繞點(diǎn)處逆時(shí)針旋轉(zhuǎn)至圖2,使一邊在的內(nèi)部.且恰好平分,求的度數(shù);(2)在圖3中,延長線段得到射線,判斷是否平分,請(qǐng)說明理由.(3)將圖1中的三角板繞點(diǎn)按每秒10°的速度沿順時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第秒時(shí),直線恰好平分銳角,則的值為______.(直接寫出答案)【答案】(1)(2)平分;理由見解析(3)30或12秒【分析】(1)由角的平分線的定義和等角的余角相等求解;(2)先由對(duì)頂角性質(zhì)得=30°,再由,得,從而得出結(jié)論;(3)由∠BOC=120°可得∠AOC=60°,則∠AON=30°或∠NOR=30°,即順時(shí)針旋轉(zhuǎn)300°或120°時(shí)ON平分∠AOC,據(jù)此求解.【詳解】(1)解:∵,∴,∵恰好平分,∴,∴,∴;(2)解:∵(對(duì)頂角),.∴,又∵,∴.∴∴平分(3)解:30或12.設(shè)三角板繞點(diǎn)旋轉(zhuǎn)的時(shí)間是秒,∵,∴,如圖,當(dāng)?shù)姆聪蜓娱L線平分時(shí),,∴,∴旋轉(zhuǎn)的角度是,∴,∴;如圖,當(dāng)平分時(shí),,∴旋轉(zhuǎn)的角度是,∴,∴,綜上,或,即此時(shí)三角板繞點(diǎn)旋轉(zhuǎn)的時(shí)間是30或12秒.【點(diǎn)睛】此題考查了角的計(jì)算,關(guān)鍵是應(yīng)該認(rèn)真審題并仔細(xì)觀察圖形,找到各個(gè)量之間的關(guān)系,是解題的關(guān)鍵.15.(2022秋·浙江臺(tái)州·七年級(jí)校聯(lián)考階段練習(xí))如圖,直線CD,EF相交于點(diǎn)O,射線OA在∠COF的內(nèi)部,∠DOF=∠AOD.(1)如圖1,若∠AOC=120°,求∠EOC的度數(shù);(2)如圖2,若∠AOC=α(60°<α<180°),將射線OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°,到OB,①求∠EOB的度數(shù)(用含α的式子表示);②觀察①中的結(jié)果,直接寫出∠AOC,∠EOB之間的數(shù)量關(guān)系.(3)如圖3,0°<∠AOC<120°,將射線OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°,到OB,請(qǐng)直接寫出∠AOC,∠EOB之間的數(shù)量關(guān)系.【答案】(1)∠EOC=20°;(2)①∠EOB=;②∠EOB=∠AOC;(3)當(dāng)0°<∠AOC≤90°時(shí),∠EOB=∠AOC+120°;當(dāng)90°<∠AOC≤120°時(shí),∠EOB=240°-∠AOC.【分析】(1)根據(jù)補(bǔ)角的定義求出∠AOD,結(jié)合已知求出∠DOF,然后根據(jù)對(duì)頂角相等得出答案;(2)①根據(jù)補(bǔ)角的定義求出∠AOD,結(jié)合已知求出∠DOF,然后根據(jù)對(duì)頂角相等求出∠EOC,再根據(jù)∠BOC=α-60°,求出∠EOB的度數(shù)即可;②根據(jù)題意結(jié)合補(bǔ)角的定義求出∠AOD=180°-∠AOC,∠BOC=∠AOC-60°,然后可得∠DOF=∠AOD=60°-∠AOC,再根據(jù)對(duì)頂角相等計(jì)算得出答案;(3)分情況討論:①當(dāng)0°<∠AOC≤90°時(shí),根據(jù)題意結(jié)合補(bǔ)角的定義求出∠AOD=180°-∠AOC,∠BOC=∠AOC+60°,然后可得∠DOF=∠AOD=60°-∠AOC,再根據(jù)對(duì)頂角相等計(jì)算得出答案;②當(dāng)90°<∠AOC≤120°時(shí),根據(jù)題意結(jié)合補(bǔ)角的定義求出∠AOD=180°-∠AOC,∠BOC=∠AOC+60°,然后可得∠DOF=∠AOD=60°-∠AOC,再根據(jù)對(duì)頂角相等計(jì)算得出∠EOC+∠BOC=∠AOC+120°,最后根據(jù)周角的定義計(jì)算得出答案.(1)解:∵∠AOC=120°,∴∠AOD=180°-∠AOC=180°-120°=60°,∴∠DOF=∠AOD=20°,∴∠EOC=∠DOF=20°;(2)解:①∵∠AOC=α,∴∠AOD=180°-α,∴∠DOF=∠AOD=60°-,∴∠EOC=∠DOF=60°-,由題意得:∠AOB=60°,∴∠BOC=α-60°,∴∠EOB=∠EOC+∠BOC=60°-+α-60°=;②觀察①中結(jié)果可得:∠EOB=,證明:∵∠AOD=180°-∠AOC,∠BOC=∠AOC-∠AOB=∠AOC-60°,∴∠DOF=∠AOD=60°-∠AOC,∴∠EOC=∠DOF=60°-∠AOC,∴∠EOB=∠EOC+∠BOC=60°-∠AOC+∠AOC-60°=∠AOC;(3)解:①當(dāng)0°<∠AOC≤90°時(shí),如圖,∵∠AOD=180°-∠AOC,∠BOC=∠AOC+∠AOB=∠AOC+60°,∴∠DOF=∠AOD=60°-∠AOC,∴∠EOC=∠DOF=60°-∠AOC,∴∠EOB=∠EOC+∠BOC=60°-∠AOC+∠AOC+60°=∠AOC+120°.②當(dāng)90°<∠AOC≤120°時(shí),如圖,∵∠AOD=180°-∠AOC,∠BOC=∠AOC+∠AOB=∠AOC+60°,∴∠DOF=∠AOD=60°-∠AOC,∴∠EOC=∠DOF=60°-∠AOC,∴∠EOC+∠BOC=60°-∠AOC+∠AOC+60°=∠AOC+120°,∴∠EOB=360°-(∠EOC+∠BOC)=360°-∠AOC-120°=240°-∠AOC.【點(diǎn)睛】本題考查了補(bǔ)角的定義,角的和差計(jì)算,對(duì)頂角相等,理清各角之間的關(guān)系是正確計(jì)算的前提.考點(diǎn)2:補(bǔ)全證明過程典例:(2022春·黑龍江哈爾濱·七年級(jí)哈爾濱市第六十九中學(xué)校校考期中)完成下面推理過程.在括號(hào)內(nèi)、橫線上填空或填上推理依據(jù).如圖,已知:,,,求證:.證明:∵(已知)∴______(______)∵(已知)∴______(______)即∴∵(已知)∴______(______)∴EF∥______(______)∴(______).【答案】;兩直線平行,內(nèi)錯(cuò)角相等;90°;垂直定義;;同角的余角相等;;內(nèi)錯(cuò)角相等,兩直線平行;平行于同一條直線的兩條直線互相平行或如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.【分析】根據(jù)平行線的性質(zhì)得到,根據(jù)余角的性質(zhì)得到,根據(jù)平行線的判定定理即可得到結(jié)論.【詳解】證明:∵(已知),∴(兩直線平行,內(nèi)錯(cuò)角相等),∵(已知),∴90°(垂直定義),即,∴,∵(已知),∴(同角的余角相等),∴EF∥CD(內(nèi)錯(cuò)角相等,兩直線平行),∴(平行于同一條直線的兩條直線互相平行或如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).方法或規(guī)律點(diǎn)撥本題考查了平行線的判定和性質(zhì),垂直的定義,熟練掌握平行線的判定和性質(zhì)是解題的關(guān)鍵.鞏固練習(xí)1.(2022春·吉林長春·七年級(jí)期末)如圖,直線,,,求的度數(shù).閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式).解:∵(已知),∴(
)(
).又∵,(已知),∴(等式的性質(zhì)).∴(
).∴(
)(
)(
).∴(
)(
).∴.【答案】,兩直線平行,內(nèi)錯(cuò)角相等,等量代換,,,同旁內(nèi)角互補(bǔ),兩直線平行,,兩直線平行,同位角相等.【分析】根據(jù)題干的提示,利用平行線的判定與性質(zhì)逐步填寫理由,從而可得答案.【詳解】解:∵(已知),∴(兩直線平行,內(nèi)錯(cuò)角相等).又∵,(已知),∴(等式的性質(zhì)).∴(等量代換).∴(同旁內(nèi)角互補(bǔ),兩直線平行).∴(兩直線平行,同位角相等).∴.【點(diǎn)睛】本題考查的是平行線的判定與性質(zhì),熟記平行線的判定方法與性質(zhì)是解本題的關(guān)鍵.2.(2022春·吉林長春·七年級(jí)吉林大學(xué)附屬中學(xué)期末)根據(jù)題意,完成推理填空:如圖,,,試說明.解:∵(已知)∴______(內(nèi)錯(cuò)角相等,兩直線平行)∴(兩直線平行,同旁內(nèi)角互補(bǔ))∵(已知)∴______+______,(
)∴(等量代換)【答案】;;;兩直線平行,同旁內(nèi)角互補(bǔ)【分析】根據(jù)平行線的性質(zhì)和平行線的判定解答.【詳解】解:∵(已知)∴(內(nèi)錯(cuò)角相等,兩直線平行)∴(兩直線平行,同旁內(nèi)角互補(bǔ))∵(已知)∴,(兩直線平行,同旁內(nèi)角互補(bǔ))∴(等量代換)故答案為:;;;兩直線平行,同旁內(nèi)角互補(bǔ).【點(diǎn)睛】本題主要考查平行線的性質(zhì)和判定,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.3.(2022春·八年級(jí)單元測試)(1)完成下面的推理說明:已知:如圖,,、分別平分和.求證:.證明:、分別平分和(已知),,().(),().().(等式的性質(zhì)).().(2)說出(1)的推理中運(yùn)用了哪兩個(gè)互逆的真命題.【答案】(1);;角平分線的定義;已知;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行;(2)兩個(gè)互逆的真命題為:兩直線平行,內(nèi)錯(cuò)角相等;內(nèi)錯(cuò)角相等,兩直線平行【分析】(1)根據(jù)平行線的性質(zhì),可得,根據(jù)角平分線的定義,可得,再根據(jù)平行線的判定,即可得出;(2)在兩個(gè)命題中,如果一個(gè)命題的結(jié)論和題干是另一個(gè)命題的題干和結(jié)論,則稱它們?yōu)榛ツ婷}.【詳解】解:(1)、分別平分和(已知),,(角平分線的定義),(已知),(兩直線平行,內(nèi)錯(cuò)角相等),(等量代換),(等式的性質(zhì)),(內(nèi)錯(cuò)角相等,兩直線平行),故答案為:;;角平分線的定義;已知;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;內(nèi)錯(cuò)角相等,兩直線平行;(2)兩個(gè)互逆的真命題為:兩直線平行,內(nèi)錯(cuò)角相等;內(nèi)錯(cuò)角相等,兩直線平行.【點(diǎn)睛】本題考查的是平行線的判定與性質(zhì)的運(yùn)用,解題時(shí)注意:平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系;平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng).4.(2022春·福建福州·七年級(jí)校考期末)如圖,平分,F(xiàn)在上,G在上,與相交于點(diǎn)H,,試說明.(請(qǐng)通過填空完善下列推理過程)解:∵(已知),()∴___________(等量代換).∴()∴______(___________).∵平分,∴______(___________).∴()【答案】對(duì)頂角相等;;同旁內(nèi)角互補(bǔ),兩直線平行;;兩直線平行,同位角相等;;角平分線的定義;等量代換【分析】求出,根據(jù)平行線的判定得出,根據(jù)平行線的性質(zhì)得出,根據(jù)角平分線的定義得出即可.【詳解】解:∵(已知),(對(duì)頂角相等),∴(等量代換),∴(同旁內(nèi)角互補(bǔ),兩直線平行),∴(兩直線平行,同位角相等),∵平分,∴(角平分線的定義),∴(等量代換),故答案為:對(duì)頂角相等;;同旁內(nèi)角互補(bǔ),兩直線平行;;兩直線平行,同位角相等;;角平分線的定義;等量代換.【點(diǎn)睛】本題考查了平行線的性質(zhì)和判定,角平分線的定義,能靈活運(yùn)用平行線的性質(zhì)和判定定理進(jìn)行推理是解此題的關(guān)鍵.5.(2021春·黑龍江哈爾濱·七年級(jí)哈爾濱市虹橋初級(jí)中學(xué)校??计谥校┳C明:∵,(已知)∴(垂直定義)∴(同位角相等,兩直線平行)∴___________(___________)∵(已知)∴(___________)∴(同位角相等,兩直線平行)∴(___________)∵(已知)∴(垂直定義)【答案】;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;兩直線平行,同位角相等【分析】先證明,推出,再得到,再利用平行線的性質(zhì)即可得到結(jié)論.【詳解】證明:∵,(已知),∴(垂直定義),∴(同位角相等,兩直線平行),∴(兩直線平行,內(nèi)錯(cuò)角相等),∵(已知),∴(等量代換),∴(同位角相等,兩直線平行),∴(兩直線平行,同位角相等),∵(已知),∴(垂直定義).故答案為:;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;兩直線平行,同位角相等.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì),熟記平行線的判定和性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.6.(2022秋·山東濟(jì)南·七年級(jí)統(tǒng)考期末)如圖,,,,求的度數(shù).解:∵,∴().又∵,∴().∴().∴().∵,∴.【答案】;兩直線平行,同位角相等;等量代換;;內(nèi)錯(cuò)角相等,兩直線平行;;兩直線平行,同旁內(nèi)角互補(bǔ);【分析】根據(jù)平行線的性質(zhì)和已知求出,根據(jù)平行線的判定推出,根據(jù)平行線的性質(zhì)求出即可.【詳解】解:∵,∴(兩直線平行,同位角相等.)又∵,∴(等量代換),∴(內(nèi)錯(cuò)角相等,兩直線平行),∴(兩直線平行,同旁內(nèi)角互補(bǔ)),∵,∴.故答案為:;兩直線平行,同位角相等;等量代換;;內(nèi)錯(cuò)角相等,兩直線平行;;兩直線平行,同旁內(nèi)角互補(bǔ);.【點(diǎn)睛】本題考查了平行線的性質(zhì)和判定的應(yīng)用,能靈活運(yùn)用平行線的性質(zhì)和判定定理進(jìn)行推理是解此題的關(guān)鍵,注意:平行線的性質(zhì)是①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯(cuò)角相等,③兩直線平行,同旁內(nèi)角互補(bǔ),反之亦然.7.(2022秋·北京·七年級(jí)??茧A段練習(xí))如圖所示的是一個(gè)潛望鏡模型示意圖,,代表鏡子擺放的位置,并且與平行,光線經(jīng)過鏡子反射時(shí),滿足,.證明離開潛望鏡的光線平行于進(jìn)入潛望鏡的光線.請(qǐng)補(bǔ)全下述證明過程:∵,∴______(____________________________________).∵,,∴.∵,______,∴______.∴(____________________________________).【答案】;兩直線平行,內(nèi)錯(cuò)角相等;;內(nèi)錯(cuò)角相等,兩直線平行.【分析】根據(jù),可得,從而得到,進(jìn)而得到,即可.【詳解】證明:∵,∴(兩直線平行,內(nèi)錯(cuò)角相等).∵,,∴.∵,,∴.∴(內(nèi)錯(cuò)角相等,兩直線平行).故答案為:;兩直線平行,內(nèi)錯(cuò)角相等;;內(nèi)錯(cuò)角相等,兩直線平行.【點(diǎn)睛】本題主要考查了平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì)是解題的關(guān)鍵.8.(2022秋·北京·七年級(jí)北京市第一六一中學(xué)校考期末)推理填空:如圖,直線被直線所截,是的角平分線,若,求∠4的度數(shù).解:∵直線與直線相交,∴.()∵是的角平分線,∴,()∵,(已知)∴,(等量代換)∴,(等量代換)∴,()∴,(兩直線平行,同位角相等)【答案】見解析【分析】根據(jù)平行線的判定及性質(zhì)求解,一步步把求解的過程補(bǔ)充完整即可.【詳解】解:∵直線與直線相交,∴(對(duì)頂角相等),∵是的角平分線,∴,(角平分線的定義),∵(已知),∴(等量代換),∴等量代換),∴(內(nèi)錯(cuò)角相等,兩直線平行),∴(兩直線平行,同位角相等).故答案為:對(duì)頂角相等;角平分線的定義;內(nèi)錯(cuò)角相等,兩直線平行;.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì)、角平分線的定義,解題的關(guān)鍵是把解題的過程補(bǔ)充完整.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),熟悉利用平行線的性質(zhì)解決問題的過程.9.(2022秋·湖南邵陽·七年級(jí)??计谥校┮阎鐖D,平分平分.求證:.請(qǐng)將下列證明過程中的空格補(bǔ)充完整.證明:∵,∴.(
)∵平分平分,∴.(
)∴.∴.(
)∴.(兩直線平行,內(nèi)錯(cuò)角相等)∵,∴,即.(
)【答案】兩直線平行,同位角相等;角平分線的定義;;同位角相等,兩直線平行;;垂直的定義【分析】根據(jù),可得,再由平分平分,可得,從而得到,進(jìn)而得到,即可.【詳解】證明:∵,∴.(兩直線平行,同位角相等)∵平分平分,∴.(角平分線的定義)∴.∴.(同位角相等,兩直線平行)∴.(兩直線平行,內(nèi)錯(cuò)角相等)∵,∴,即.(垂直的定義)故答案為∶兩直線平行,同位角相等;角平分線的定義;;同位角相等,兩直線平行;;垂直的定義【點(diǎn)睛】本題主要考查了平行線的判定和性質(zhì),垂直的定義,熟練掌握平行線的判定和性質(zhì)是解題的關(guān)鍵.10.(2022秋·陜西渭南·七年級(jí)統(tǒng)考階段練習(xí))完成下面的證明:如圖,點(diǎn)在上,,連接,平分,,于點(diǎn).求證:.證明:∵,∴(_____________________).∵,∴,即.∵平分,∴______(__________________).∴,∴(________________________)∴__________________(________________________).∵,∴______(______________________).∴.【答案】兩直線平行,內(nèi)錯(cuò)角相等;;角平分線的定義;內(nèi)錯(cuò)角相等,兩直線平行;;兩直線平行,內(nèi)錯(cuò)角相等;90;垂直的定義【分析】根據(jù)平行線性質(zhì)與判定、角平分線定義、垂直的定義填空即可.【詳解】證明:∵,∴(兩直線平行,內(nèi)錯(cuò)角相等).∵,∴,即.∵平分,∴(角平分線的定義).∴,∴(內(nèi)錯(cuò)角相等,兩直線平行).∴(兩直線平行,內(nèi)錯(cuò)角相等).∵,∴(垂直的定義).∴.故答案為:兩直線平行,內(nèi)錯(cuò)角相等;;角平分線的定義;內(nèi)錯(cuò)角相等,兩直線平行;;兩直線平行,內(nèi)錯(cuò)角相等;90;垂直的定義.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)與判定,角平分線的定義,垂直的定義,熟知相關(guān)知識(shí)是解題的關(guān)鍵.11.(2022春·黑龍江哈爾濱·七年級(jí)哈爾濱市第四十九中學(xué)校??茧A段練習(xí))填空并在括號(hào)內(nèi)加注理由.已知:如圖,,,,,求證:.證明:∵,(已知)∴(________________)∴(________________)∴________(________________)∵(已知)∴(________________)∴(同位角相等,兩直線平行)∴________(________________)∵(已知)∴∴∴(________________)【答案】垂直定義;同位角相等,兩直線平行;;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;;兩直線平行,同位角相等;垂直定義【分析】先證得,可得到,從而得到,進(jìn)而得到,即可求證.【詳解】證明:∵,(已知)∴(垂直定義)∴(同位角相等,兩直線平行)∴(兩直線平行,內(nèi)錯(cuò)角相等)∵(已知)∴(等量代換)∴(同位角相等,兩直線平行)∴(兩直線平行,同位角相等)∵(已知)∴∴∴(垂直定義)故答案為:垂直定義;同位角相等,兩直線平行;;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;;兩直線平行,同位角相等;垂直定義【點(diǎn)睛】本題主要考查了平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì)是解題的關(guān)鍵.考點(diǎn)3:在生活中應(yīng)用平行線性質(zhì)和判定典例:(2022秋·廣東深圳·七年級(jí)??计谥校┤鐖D,圖①是一種網(wǎng)紅彈弓的實(shí)物圖,在兩頭上系上皮筋,拉動(dòng)皮筋可形成平面示意圖如圖②和圖③,彈弓的兩邊可看成是平行的,即,各活動(dòng)小組探索與,之間數(shù)量關(guān)系時(shí),有如下發(fā)現(xiàn),(1)在圖②所示的圖形中,若,,則___________(2)在圖⑧中,若,,則_________(3)有同學(xué)在圖②和圖③的基礎(chǔ)上,面出了圖④所示的圖形,其中,請(qǐng)判斷,,之間的關(guān)系,并說明理由.【答案】(1)(2)(3)【分析】(1)如圖所示,過點(diǎn)P作,利用平行線的性質(zhì)得到由此即可得到答案;(2)如圖所示,過點(diǎn)P作,利用平行線的性質(zhì)得到,在求出的度數(shù)即可得到答案;(3)如圖所示,過點(diǎn)P作,由平行線的性質(zhì)得到,再由即可得到結(jié)論.(1)解:如圖所示,過點(diǎn)P作,∵,∴,∴,∴,故答案為:;(2)解:如圖所示,過點(diǎn)P作,∵,∴,∴,∵,∴∴,故答案為:;(3)解:,理由如下:如圖所示,過點(diǎn)P作,∵,∴,∴,∴,∴.方法或規(guī)律點(diǎn)撥本題主要考查了平行線的性質(zhì),正確作出輔助線是解題的關(guān)鍵.鞏固練習(xí)1.(2022秋·河北石家莊·七年級(jí)統(tǒng)考期中)有一道題目“一副直角三角尺如圖所示疊放,現(xiàn)將含45°角的三角尺ADE固定不動(dòng),將含30°角的三角尺ABC繞頂點(diǎn)A順時(shí)針轉(zhuǎn)動(dòng)180°,在旋轉(zhuǎn)的過程中,當(dāng)三角尺ABC的邊BC與三角尺ADE的邊平行時(shí),求∠BAD.”嘉嘉的結(jié)果是∠BAD為60°或105°;淇淇說:“嘉嘉考慮的不周全,∠BAD還有另一個(gè)不同的值.”下列判斷正確的是(
)A.淇洪說的對(duì),且∠BAD的另一個(gè)值為15°B.嘉嘉的結(jié)果完全正確C.嘉嘉求的結(jié)果不對(duì),∠BAD為30°或105°D.兩人都不對(duì),∠BAD應(yīng)5有個(gè)不同的值【答案】A【分析】分三種情況:若,若,若,由平行線的性質(zhì)可得出答案.【詳解】解:若,∴∠CFE=∠E=90°,又∵∠C=30°,∴,∴∠DAB=45°-30°=15°;若,;若,,.綜上所述,為或或.故選:.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),平行線的性質(zhì),正確畫出圖形是解題的關(guān)鍵.2.(2022秋·貴州安順·七年級(jí)統(tǒng)考期末)如圖,某沿湖公路有三次拐彎,若第一次的拐角∠A=110°,第二次的拐角∠B=140°,第三次的拐角為∠C,第三次拐彎后的道路恰好和第一次拐彎之前的道路平行,則∠C的度數(shù)是(
)A.130° B.140° C.145° D.150°【答案】D【分析】過點(diǎn)B作BEAD,利用平行線的性質(zhì)可得∠ABE=110°,從而求出∠EBC=30°,然后再利用平行線的性質(zhì),即可解答.【詳解】解:過點(diǎn)B作BEAD,∴∠A=∠ABE=110°,∵∠ABC=140°,∴∠EBC=∠ABC?∠ABE=30°,∵ADCF,∴BECF,∴∠C=180°?∠EBC=150°,故選:D.【點(diǎn)睛】本題考查了平行線的性質(zhì),根據(jù)題目的已知條件并結(jié)合圖形添加適當(dāng)?shù)妮o助線是解題的關(guān)鍵.3.(2022秋·廣東深圳·七年級(jí)??计谥校┠惩瑢W(xué)在研究傳統(tǒng)文化“抖空竹”時(shí)有一個(gè)發(fā)現(xiàn):他把它抽象成數(shù)學(xué)問題,如圖所示,已知,,,則的度數(shù)是(
)A. B. C. D.【答案】B【分析】延長交于,依據(jù),,可得,再根據(jù)三角形外角性質(zhì),即可得到.【詳解】解:如圖,延長交于,∵,,,又,,.故選:B.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是掌握:兩直線平行,同位角相等.4.(2022秋·河南商丘·七年級(jí)統(tǒng)考期末)在慶祝中華人民共和國成立70周年閱兵式上,我國自主研制的“DF—17導(dǎo)彈”首次登場,震撼全球.如圖是“DF—17導(dǎo)彈”上的一個(gè)零件的平面圖,已知AB∥FE∥DC,AF∥ED∥BC,∠B=65°,則等于(
)A.130° B.120° C.115° D.90°【答案】A【分析】根據(jù)平行線的性質(zhì)進(jìn)行角的轉(zhuǎn)換即可求解;【詳解】解:∵AB∥DC,∠B=65°,∴∠C=180°-∠B=180°-65°=115°,∵ED∥BC,∴∠D=180°-∠C=180°-115°=65°,∵FE∥DC,∴∠DEF=∠D=65°,∵AF∥ED,∴∠F=∠DEF=∠D=65°,∴∠F+∠D=65°+65°=130°.故選:A.【點(diǎn)睛】本題主要考查平行線的性質(zhì),掌握平行線的性質(zhì)并根據(jù)題意靈活應(yīng)用是解題的關(guān)鍵.5.(2022春·廣東深圳·八年級(jí)??计谀┕饩€在不同介質(zhì)中傳播速度不同,從一種介質(zhì)射向另一種介質(zhì)時(shí)會(huì)發(fā)生折射.如圖,水面與水杯下沿平行,光線從水中射向空氣時(shí)發(fā)生折射,光線變成,點(diǎn)在射線上,已知,,則的度數(shù)為______.【答案】##25度【分析】根據(jù)平行線的性質(zhì)求得,根據(jù)即可求解.【詳解】解:∵,∴.∵,∴;故答案為25°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,掌握平行線的性質(zhì)與判定是解題的關(guān)鍵.6.(2022秋·北京·七年級(jí)??茧A段練習(xí))如圖,一把長方形直尺沿直線斷開并錯(cuò)位,點(diǎn),,,在同一條直線上.若,則的度數(shù)是______.【答案】##度【分析】根據(jù)平行線的性質(zhì)及鄰補(bǔ)角的性質(zhì)作答.【詳解】解:∵,∴,∵,∴.故答案為:.【點(diǎn)睛】本題考查平行線的性質(zhì),解題關(guān)鍵是熟練掌握兩直線平行,內(nèi)錯(cuò)角相等.7.(2022春·黑龍江哈爾濱·七年級(jí)哈爾濱德強(qiáng)學(xué)校??计谥校┤鐖D,汽車燈的剖面圖,從位于點(diǎn)的燈發(fā)出光照射到凹面鏡上反射出的光線,都是水平線,若,,則的度數(shù)為______.【答案】##60度【分析】如圖所示,過點(diǎn)O作,則,根據(jù)平行線的性質(zhì)求解即可.【詳解】解:如圖所示,過點(diǎn)O作,∵光線,都是水平線,∴,∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),熟知兩直線平行,內(nèi)錯(cuò)角相等是解題的關(guān)鍵.8.(2022春·北京海淀·八年級(jí)北京市十一學(xué)校校考期中)如圖,平面中兩條直線和相交于點(diǎn),對(duì)于平面上任意一點(diǎn),若點(diǎn)到直線、的距離分別是、,則稱有序?qū)崝?shù)對(duì)是點(diǎn)的“距離坐標(biāo)”.特別地,當(dāng)點(diǎn)在直線上時(shí),定義點(diǎn)到直線的距離為0.下列說法:①“距離坐標(biāo)”是的點(diǎn)只有點(diǎn);②“距離坐標(biāo)”是的點(diǎn)只有1個(gè);③“距離坐標(biāo)”是的點(diǎn)共有4個(gè);正確的有_________.(填序號(hào))【答案】①②③【分析】根據(jù)“距離坐標(biāo)”的定義逐條分析即可.【詳解】解:①若“距離坐標(biāo)”為,則點(diǎn)有且僅有1個(gè),是與的交點(diǎn)O,正確;②如圖所示,若“距離坐標(biāo)”為,則,,的點(diǎn)有且僅有2個(gè),點(diǎn)O的兩側(cè)直線上各有一個(gè)到直線距離為1的點(diǎn),正確;③若“距離坐標(biāo)”為,則,,的點(diǎn)如圖所示,過直線的一點(diǎn)作的平行線且到直線l2的距離等于2,過直線l2的一點(diǎn)作的平行線且到直線的距離等于1的直線相交于、、、,有且僅有4個(gè),正確.所以上述命題中,正確命題是:①②③.【點(diǎn)睛】本題考查了新定義“距離坐標(biāo)”、平行線的性質(zhì)、點(diǎn)到直線的距離,簡易邏輯的判定方法,考查了推理能力與作圖能力,屬于中檔題.9.(2022秋·山東濟(jì)南·六年級(jí)??计谥校┬腋`l(xiāng)要修建一條灌溉水渠,如圖,水渠從A村沿北偏東60°的方向到B村,從B村沿北偏西30°方向到C村.若水渠從C村沿CD方向修建可以保持與AB的方向一致,則∠DCB的度數(shù)為_____°【答案】90度##90°【分析】根據(jù)CD與AB的方向一致,可得,即有∠DCB=∠CBA,根據(jù),可得∠A+∠ABN=180°,即有∠ABC=90°,則有∠DCB=90°,問題得解.【詳解】如圖,設(shè)置點(diǎn)M、N,根據(jù)題意有:,∵CD與AB的方向一致,∴,∴∠DCB=∠CBA,∵,∴∠A+∠ABN=180°,∵∠A=60°,∠ABN=∠ABC+∠CBN,∠CBN=30°,∴∠ABC=90°,∴∠DCB=90°,故答案為:90°.【點(diǎn)睛】本題考查了平行線的性質(zhì)、方位角的應(yīng)用,明確題意,靈活運(yùn)用平行線的性質(zhì)是解答本題的關(guān)鍵.10.(2022秋·陜西西安·七年級(jí)??茧A段練習(xí))如圖,將木條,與釘在一起,,,要使木條與平行,木條按圖所示方向旋轉(zhuǎn)的度數(shù)至少是__.【答案】30°【分析】根據(jù)同位角相等,兩直線平行,求出旋轉(zhuǎn)后∠2的同位角的度數(shù),然后用∠1減去即可得到木條a旋轉(zhuǎn)的度數(shù).【詳解】解:如圖:∵∠AOC=∠2=50°時(shí),OA//b,即a//b,∴要使木條a與b平行,木條a旋轉(zhuǎn)的度數(shù)至少是80°﹣50°=30°.故答案為:30°.【點(diǎn)睛】本題考查了平行線的判定,根據(jù)同位角相等兩直線平行求出旋轉(zhuǎn)后∠2的同位角的度數(shù)是解題的關(guān)鍵.11.(2022秋·浙江溫州·七年級(jí)統(tǒng)考期中)如圖,放置在水平操場上的籃球架的橫梁EF始終平行于AB,EF與上拉桿CF形成的∠F=140°,主柱AD垂直于地面,通過調(diào)整CF和后拉桿BC的位置來調(diào)整籃筐的高度.當(dāng)∠CDB=35°時(shí),點(diǎn)H,D,B在同一直線上,則∠H的度數(shù)是_.【答案】##105度【分析】過D點(diǎn)作DIEF,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)可求∠FDI=40°,根據(jù)平角的定義可求∠ADB=15°,根據(jù)直角三角形的性質(zhì)可求∠ABH=75°,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)可求∠H=105°.【詳解】解:過D點(diǎn)作DIEF,∵∠F=140°,∴∠FDI=40°,∴∠ADB=180°?90°?40°?35°=15°,∴∠ABH=90°?15°=75°.∵GHAB,∴∠H=180°?75°=105°.故答案為:105°.【點(diǎn)睛】本題考查了平行線的性質(zhì),平行線性質(zhì)定理:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.12.(2022秋·山東泰安·六年級(jí)統(tǒng)考期末)如圖1是某景區(qū)電動(dòng)升降門,將其抽象為幾何圖形,如圖2所示,垂直于地面于,當(dāng)平行于地面時(shí),則______.【答案】270°##270度【分析】過點(diǎn)B作BFAE,如圖,由于CDAE,則BFCD,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得∠BCD+∠CBF=180°,由AB⊥AE得AB⊥BF,所以∠ABF=90°,于是有∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=270°.【詳解】解:過點(diǎn)B作BFAE,如圖:∵CDAE,∴BFCD,∴∠BCD+∠CBF=180°,∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∴∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=90°+180°=270°.故答案為:270°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),正確作出輔助線,并熟記兩直線平行,同旁內(nèi)角互補(bǔ)是解決問題的關(guān)鍵.13.(2022秋·福建三明·七年級(jí)??计谥校榱肆粱尘包c(diǎn),三明市在兩條筆直且互相平行的景觀道MN、QP上分別放置A、B兩盞激光燈,如圖所示,A燈發(fā)出的光束自AM逆時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),B燈發(fā)出的光束自BP逆時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不間斷照射,A燈每秒轉(zhuǎn)動(dòng)30°,B燈每秒轉(zhuǎn)動(dòng)10°,B燈先轉(zhuǎn)動(dòng)4秒,A燈才開始轉(zhuǎn)動(dòng),當(dāng)B燈光束第一次到達(dá)BQ之前,兩燈的光束互相平行時(shí)A燈旋轉(zhuǎn)的時(shí)間是_______________秒.【答案】2或8##8或2【分析】設(shè)A燈旋轉(zhuǎn)時(shí)間為t秒,B燈光束第一次到達(dá)BQ需要180÷10=18(秒),推出t≤18-4,即t≤14.利用平行線的判定,構(gòu)建方程解決問題即可.【詳解】解:設(shè)A燈旋轉(zhuǎn)時(shí)間為t秒,B燈光束第一次到達(dá)BQ需要180÷10=18(秒),∴t≤18-4,即t≤14.由題意,滿足以下條件時(shí),兩燈的光束能互相平行:①如圖1,∠=∠,30t=10(4+t),解得t=2;②如圖2,當(dāng)A燈發(fā)出的光束旋轉(zhuǎn)至AN回轉(zhuǎn)時(shí),∠+∠=180°,30t-180+10(4+t)=180,解得t=8;綜上所述,A燈旋轉(zhuǎn)的時(shí)間為2或8秒.故選:2或8.【點(diǎn)睛】本題考查平行線的性質(zhì),解決此題的關(guān)鍵是分類討論、有平行的性質(zhì)列出每種情況的等量關(guān)系.14.(2022秋·山東東營·六年級(jí)??计谀?shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.如圖1,一束光線m射到平面鏡a上,被a反射后的光線為n,則入射光線m、反射光線n與平面鏡a所夾的銳角.(1)利用這個(gè)規(guī)律人們制作了潛望鏡,圖2是潛望鏡工作原理示意圖,AB、CD是平行放置的兩面平面鏡.已知光線經(jīng)過平面鏡反射時(shí),有,,請(qǐng)解釋進(jìn)入潛望鏡的光線m為什么和離開潛望鏡的光線是平行的?(請(qǐng)把證明過程補(bǔ)充完整)理由:∵(已知),∴(①),∵,(已知),∴(②),∴,即:,∴(③)(2)顯然,改變兩面平面鏡AB、CD之間的位置關(guān)系,經(jīng)過兩次反射后,入射光線m與反射光線n之間的位置關(guān)系會(huì)隨之改變,如圖3,一束光線m射到平面鏡AB上,被AB反射到平面鏡CD上,又被CD反射.若被CD反射出的光線n和光線m平行,且,則∠6=______°,∠ABC=______°.(3)請(qǐng)你猜想:圖3中,當(dāng)兩平面鏡AB、CD的夾角∠ABC=______°時(shí),可以使任何入射光線m經(jīng)過平面鏡AB、CD的兩次反射后,與反射光線n平行、請(qǐng)說明理由.【答案】(1)①兩直線平行,內(nèi)錯(cuò)角相等;②等量代換;③內(nèi)錯(cuò)角相等,兩直線平行;(2)96,90(3)當(dāng)時(shí),可以使任何入射光線m經(jīng)過平面鏡AB、CD的兩次反射后,與反射光線n平行,理由見解析【分析】(1)根據(jù)兩直線平行內(nèi)錯(cuò)角相等得,根據(jù)角之間的關(guān)系等量代換得,即可得,根據(jù)內(nèi)錯(cuò)角相等兩直線平行即可得;(2)由題意得,,,即可得,根據(jù)得,可得,即可得,根據(jù)三角形內(nèi)角和定理即可得;(3)由(1)得,,,根據(jù),得,即可得,等量代換得即,根據(jù)三角形內(nèi)角和定理即可得.(1)證明:∵(已知),∴(①兩直線平行,內(nèi)錯(cuò)角相等),∵,(已知),∴(②等量代換),∴,即:,∴(③內(nèi)錯(cuò)角相等,兩直線平行)故答案為:①兩直線平行,內(nèi)錯(cuò)角相等;②等量代換;③內(nèi)錯(cuò)角相等,兩直線平行;(2)解:由題意得,,,∴,∵,∴,∴,∴,∴,故答案為:96,90.(3)當(dāng)時(shí),可以使任何入射光線m經(jīng)過平面鏡AB、CD的兩次反射后,與反射光線n平行,理由如下:解:由(1)得,,,∵,∴,∴,∴,,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),解題的關(guān)鍵是理解題意,掌握平行線的判定與性質(zhì).15.(2022秋·浙江臺(tái)州·七年級(jí)校聯(lián)考期中)如圖1,MN、EF是兩面互相平行的鏡面,根據(jù)鏡面反射規(guī)律,若一束光線AB照射到鏡面MN上,產(chǎn)生反射光線BC,則一定有∠1=∠2.試根據(jù)這一規(guī)律:(1)利用直尺和量角器作出光線BC經(jīng)鏡面EF反射后的反射光線GH;(2)在(1)的作圖背景下,試判斷AB與GH的位置關(guān)系,并說明理由.(3)如圖2,若∠1=30°,有一鏡面PQ,從PN開始繞著點(diǎn)P以3°/s的速度順時(shí)針轉(zhuǎn)動(dòng)(0°<<180°),當(dāng)轉(zhuǎn)動(dòng)多少秒時(shí),光線照射到鏡面PQ上,產(chǎn)生的反射光線與鏡面MN平行?(4)如圖3,若∠1=30°,∠NPQ=(0°<<180°),光線經(jīng)鏡面EF反射后照射到鏡面PQ上,產(chǎn)生的反射光線與入射光線的夾角為,請(qǐng)直接寫出與之間的關(guān)系:.【答案】(1)見解析(2)ABGH,理由見解析(3)25秒或35秒(4)或【分析】(1)利用直尺和量角器作∠BGE=∠GHF即可;(2)證明∠ABG=∠BGH,即可得到結(jié)論;(3)設(shè)轉(zhuǎn)動(dòng)t秒時(shí),產(chǎn)生的反射光線與鏡面MN平行.分兩種情況列方程求解即可;(4)分三種情況分別求解即可.(1)如圖1,(2)ABGH,證明:由題意可得,∠1=∠2,∠EGB=∠HGF,∵M(jìn)NEF,∴∠2=∠EGB,∴∠1=∠2=∠EGB=∠HGF,∴180°∠2=180°∠EGB∠HGF,即∠ABG=∠BGH,∴ABGH.(3)設(shè)轉(zhuǎn)動(dòng)t秒時(shí),產(chǎn)生的反射光線與鏡面MN平行.①當(dāng)BC經(jīng)EF反射后照射到PQ.如圖2,
可列出方程:,解得.②BC直接照射到PQ.如圖3,可列出方程:,解得.綜上所述,設(shè)轉(zhuǎn)動(dòng)25秒或35秒時(shí),產(chǎn)生的反射光線與鏡面MN平行.(4)或,理由是:當(dāng)0°<<90°時(shí),如圖4,則∠JRT=,作RSEF,∵M(jìn)NEF,∴MNEFRS,∴∠SRP=∠NPQ=,∠RTF=∠SRT=∠BTE=∠2=∠1=30°,∴∠PRT=∠JRQ=∠PRS+∠SRT=+30°,∴∠PRT+∠TRJ+∠JRQ=2(+30°)+=180°,即.當(dāng)=90°時(shí),如圖5,則∠JRT=,∵M(jìn)NEF,∴∠TSR=∠SPN=90°,∠1=∠2=∠BTE=∠RTS=30°,∴∠TRS=∠JRP=60°,∴∠JRT==60°,∴2-=120°;當(dāng)90°<<180°時(shí),如圖6,則∠JRT=,作RSEF,∵M(jìn)NEF,∴MNEFRS,∴∠SRP=∠NPQ=,∠RTF=∠SRT=∠BTE=∠2=∠1=30°,∴∠JRS=∠JRT-∠SRT=-30°,∴∠JRP=∠TRQ=∠SRP-∠JRS=-(-30°)=-+30°,∵∠JRP+∠TRQ+∠JRT=2(-+30°)+=180°,∴.故答案為:或【點(diǎn)睛】此題主要考查了平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì)是解題的關(guān)鍵.16.(2022春·全國·八年級(jí)專題練習(xí))光線照射到鏡面會(huì)產(chǎn)生反射現(xiàn)象,由光學(xué)知識(shí),入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,例如:在圖1中,有∠1=∠2.(1)如圖2,已知鏡子MO與鏡子ON的夾角∠MON=90°,請(qǐng)判斷入射光線AB與反射光線CD的位置關(guān)系,并說明理由;(2)如圖3,有一口井,已知入射光線AO與水平線OC的夾角為50°,當(dāng)平面鏡MN與水平線OC的夾角為°,能使反射光線OB正好垂直照射到井底;(3)如圖4,直線EF上有兩點(diǎn)A、C,分別引兩條射線AB、CD.∠BAF=120°,∠DCF=40°,射線AB、CD分別繞A點(diǎn)、C點(diǎn)以3度/秒和1度/秒的速度同時(shí)逆時(shí)針轉(zhuǎn)動(dòng),設(shè)時(shí)間為t秒,在射線AB轉(zhuǎn)動(dòng)一周的時(shí)間內(nèi),是否存在某時(shí)刻,使得CD與AB平行?若存在,求出所有滿足條件的時(shí)間t.【答案】(1)ABCD,理由見解析(2)65或115(3)在射線AB轉(zhuǎn)動(dòng)一周的時(shí)間內(nèi),存在時(shí)間t,使得CD與AB平行,其t=10s或100s.【分析】(1)計(jì)算∠ABC+∠BCD的值便可得出結(jié)論;(2)先計(jì)算出∠AOB,進(jìn)而得∠AOM+∠BON的值,再根據(jù)入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,得出結(jié)果;(3)分四種情況討論:當(dāng)0s≤t≤20s時(shí),當(dāng)20s<t≤40s時(shí),當(dāng)40s<t≤80s時(shí),當(dāng)80s<t≤120s時(shí),根據(jù)角度大小變化關(guān)系鎖確ABCD時(shí)的t值.【詳解】(1)解:ABCD.理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-∠1-∠2=180°-2∠2,∠BCD=180°-∠3-∠4=180°-2∠3,∴∠ABC+∠BCD=360°-2(∠2+∠3),∵∠BOC=90°,∴∠2+∠3=90°,∴∠ABC+∠BCD=180°,∴AB∥CD;(2)解:∵∠AOC=40°,∠BOC=90°,∴∠AOM+∠BON=180°-90°=40°=50°,∵∠AOM=∠BON,∴∠AOM=∠BON=25°,∴∠COM=25°+40°=65°,∠CON=25°+90°=115°,∴當(dāng)平面鏡MN與水平線OC的夾角為65°或115°時(shí),能使反射光線OB正好垂直照射到井底,故答案為:65或115;(3)解:①當(dāng)0s≤t≤20s時(shí),如下圖,若ABCD,則∠BAC=∠ACD,即120+3t=140+t,解得t=10,∴當(dāng)t=10s時(shí)ABCD;②當(dāng)20s<t≤40s時(shí),如下圖,有∠BAE<90°<∠ACD,則AB與CD不平行;③當(dāng)40s<t≤80s時(shí),如下圖,有∠BAC<∠ACD,AB與CD不平行;④當(dāng)80s<t≤120s時(shí),如下圖,若ABCD,則∠BAC=∠DCF,即3t-240=t-40,解得t=100,∴當(dāng)t=100s時(shí),ABCD;綜上可知,在射線AB轉(zhuǎn)動(dòng)一周的時(shí)間內(nèi),存在時(shí)間t,使得CD與AB平行,其t=10s或100s.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)與判定,關(guān)鍵是應(yīng)用分類討論思想解決問題.考點(diǎn)4:平行線中的折點(diǎn)問題典例:(2022秋·江西贛州·七年級(jí)統(tǒng)考期中)根據(jù)下列敘述填依據(jù).(1)已知如圖1,,求∠B+∠BFD+∠D的度數(shù).解:過點(diǎn)F作所以∠B+∠BFE=180°(
)因?yàn)椤ⅲㄒ阎┧裕?/p>
)所以∠D+∠DFE=180°(
)所以∠B+∠BFE+∠D=∠B+∠BFE+∠EFD+∠D=360°(2)根據(jù)以上解答進(jìn)行探索.如圖(2)(3)ABEF、∠D與∠B、∠F有何數(shù)量關(guān)系(請(qǐng)選其中一個(gè)簡要證明)備用圖:(3)如圖(4)ABEF,∠C=90°,∠與∠、∠有何數(shù)量關(guān)系(直接寫出結(jié)果,不需要說明理由)【答案】(1)兩直線平行,同旁內(nèi)角互補(bǔ);,平行于同一直線的兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ)(2)見解析(3)【分析】(1)過點(diǎn)F作,得到∠B+∠BFE=180°,再根據(jù)、得到,∠D+∠DFE=180°,最后利用角度的和差即可得出答案;(2)類比問題(1)的解題方法即可得解;(3)類比問題(1)的解題方法即可得解.(1)解:過點(diǎn)F作,如圖,∴∠B+∠BFE=180°(兩直線平行,同旁內(nèi)角相等),∵、(已知)∴(平行于同一直線的兩直線平行),∴∠D+∠DFE=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),∴∠B+∠BFE+∠D=∠B+∠BFE+∠EFD+∠D=360°;故答案為:兩直線平行,同旁內(nèi)角互補(bǔ);,平行于同一直線的兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);(2)解:選圖(2),∠D與∠B、∠F的數(shù)量關(guān)系為:∠BDF+∠B=∠F;理由如下:過點(diǎn)D作DC//AB,∴∠B=∠BDC,∵,,∴,∴∠CDF=∠F,∴∠BDF+∠BDC=∠F,即∠BDF+∠B=∠F;選圖(3),∠D與∠B、∠F的數(shù)量關(guān)系:∠BDF+∠B=∠F過點(diǎn)D作,∴∠B=∠BDC,∵,,∴,∴∠CDF=∠F,∴∠BDF+∠BDC=∠F,即∠BDF+∠B=∠F∠BDF+∠B=∠F;(3)解:如圖(4)所示,過點(diǎn)C作,過D作,∴,,∵,,∴,∴,∵,,∴.方法或規(guī)律點(diǎn)撥本題考查根據(jù)平行線的性質(zhì)探究角的關(guān)系和平行線公理推論的運(yùn)用,熟練掌握平行線的性質(zhì)和平行線公理推論的運(yùn)用是解題的關(guān)鍵.鞏固練習(xí)1.(2022秋·重慶云陽·七年級(jí)??茧A段練習(xí))如圖,已知,,,那么等于()A. B. C. D.【答案】B【分析】過點(diǎn)C作,根據(jù),得出,根據(jù)平行線的性質(zhì)求出,,即可得出答案.【詳解】解:過點(diǎn)C作,如圖所示:∵,∴,∴,,∴,故B正確.故選:B.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題的關(guān)鍵是作出輔助線,熟練掌握兩直線平行內(nèi)錯(cuò)角相等;兩直線平行同旁內(nèi)角互補(bǔ).2.(2022春·四川雅安·八年級(jí)統(tǒng)考期末)如圖,,,探索圖中角α,β,γ之間的關(guān)系式正確的是()A. B. C. D.【答案】B【分析】首先過點(diǎn)C作,過點(diǎn)D作,由,即可得,然后由兩直線平行,內(nèi)錯(cuò)角相等,即可求得答案.【詳解】解:過點(diǎn)C作,過點(diǎn)D作,∵,∴,∴,∵,,由①②得:.即故選:B.【點(diǎn)睛】此題考查了平行線的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.3.(2022春·黑龍江哈爾濱·七年級(jí)哈爾濱市第六十九中學(xué)校??计谥校┤鐖D,,則下列各式中正確的是(
)A. B.C. D.【答案】D【分析】根據(jù)平行線的性質(zhì)(兩直線平行,內(nèi)錯(cuò)角相等、兩直線平行,同旁內(nèi)角互補(bǔ))即可得到結(jié)論.【詳解】∵,∴,,∴,∴,故選:D.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟記性質(zhì)是解題關(guān)鍵.4.(2022秋·浙江杭州·七年級(jí)校考階段練習(xí))如圖,,設(shè),,正確的選項(xiàng)是(
)A.若,則B.若,則C.若,則D.若,則【答案】D【分析】如圖,利用平行線的判定和性質(zhì)進(jìn)行求解即可.【詳解】解:如圖:的頂點(diǎn)分別為,延長交直線與點(diǎn),當(dāng),則,∴,∵,∴,∴,即:,解得:,∴;A、無法求出∠2的度數(shù),選項(xiàng)錯(cuò)誤,不符合題意;B、無法求出∠3的度數(shù),選項(xiàng)錯(cuò)誤,不符合題意;C、,,選項(xiàng)錯(cuò)誤,不符合題意;D、,選項(xiàng)正確,符合題意;故選D.【點(diǎn)睛】本題考查平行線的判定和性質(zhì),熟練掌握平行線的判定和性質(zhì)是解題的關(guān)鍵.5.(2022春·黑龍江哈爾濱·七年級(jí)哈爾濱風(fēng)華中學(xué)??计谥校┤鐖D,已知,則___________.【答案】【分析】如圖,過作過作證明可得再證明從而可得答案.【詳解】解:如圖,過作過作∵∴∴∴而∴∵∴∴∴∵∴∴故答案為:【點(diǎn)睛】本題考查的是平行公理的應(yīng)用,平行線的性質(zhì),利用平行公理作出輔助線是解本題的關(guān)鍵.6.(2022秋·重慶銅梁·七年級(jí)校考期中)如圖,已知,且∠C=110°,則∠1與∠2的數(shù)量關(guān)系為__________________.【答案】【分析】過點(diǎn)C作,則,根據(jù)平行線的性質(zhì)可得角之間的關(guān)系,從而∠1與∠2的數(shù)量關(guān)系即可求解.【詳解】解:過點(diǎn)C作,如圖:則,∴,,∵,∴,∴,∴.故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是作出平行線,利用平行線的性質(zhì)得出角之間的關(guān)系.7.(2022秋·甘肅武威·七年級(jí)??计谀┤鐖D,若ABCD,則,,則______.【答案】##20度【分析】過點(diǎn)作,利用平行線的性質(zhì)可得的度數(shù),進(jìn)而可得的度數(shù),再結(jié)合可得,進(jìn)而可得的度數(shù).【詳解】解:如圖,過點(diǎn)作,則,,,,.故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),構(gòu)造合適的輔助線是解題關(guān)鍵.8.(2022春·八年級(jí)課時(shí)練習(xí))已知:如圖,,求證:.【答案】見解析【分析】根據(jù)平行線的性質(zhì)定理,進(jìn)而得出,則,即可得出.【詳解】證明:過點(diǎn)C作,∴,∵,∴,∴,∴.9.(2022春·八年級(jí)課時(shí)練習(xí))已知:如圖,求證:.【答案】見解析【分析】過點(diǎn)P作,即得出,再根據(jù)平行線的性質(zhì)可得出,,最后由,即可證.【詳解】證明:如圖,過點(diǎn)P作.∴.∵,∴,∴.∵,∴.10.(2022秋·貴州畢節(jié)·七年級(jí)校考期中)已知:如圖,,,,,求的度數(shù).【答案】【分析】根據(jù)平行線的性質(zhì)可得,再由可得出答案.【詳解】解:∵,,∴,∠C=∠ABC=65°,∴.【點(diǎn)睛】本題考查平行線的性質(zhì),關(guān)鍵要掌握兩直線平行,內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ).11.(2022秋·重慶銅梁·七年級(jí)??茧A段練習(xí))課題學(xué)習(xí):平行線的“等角轉(zhuǎn)化”功能.(1)閱讀理解:如圖1,已知點(diǎn)A是外一點(diǎn),連接、,求的度數(shù).閱讀并補(bǔ)充下面推理過程.解:過點(diǎn)A作,,,,.解題反思:從上面的推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將、、“湊”在一起,得出角之間的關(guān)系,使問題得以解決.(2)方法運(yùn)用:如圖2,已知,求的度數(shù);(3)深化拓展:已知,點(diǎn)C在點(diǎn)D的右側(cè),,平分,平分,,所在的直線交于點(diǎn)E,點(diǎn)E在直線與之間.①如圖3,點(diǎn)B在點(diǎn)A的左側(cè),若,求的度數(shù).②如圖4,點(diǎn)B在點(diǎn)A的右側(cè),且,.若,求度數(shù).(用含n的代數(shù)式表示)【答案】(1);(2)(3)①;②【分析】(1)由“兩直線平行,內(nèi)錯(cuò)角相等”可得結(jié)果;(2)過C作,利用“兩直線平行,同旁內(nèi)角互補(bǔ)”可以求得結(jié)果;(3)①過E作,利用角平分線的概念求得,,再利用“兩直線平行,內(nèi)錯(cuò)角相等”導(dǎo)角即可;②過E作,利用角平分線的概念求得,,再利用平行線的性質(zhì)導(dǎo)角即可.【詳解】(1)解:,,(兩直線平行,內(nèi)錯(cuò)角相等);故答案為:;(2)解:過C作,,,,,,,;(3)解:①過E作,,,,平分,,,平分,,,,;②過E作,,,,平分,,,,,,.【點(diǎn)睛】本題考查了平行線的性質(zhì)、平行線的傳遞性以及角平分線的概念,作出輔助線構(gòu)造平行線導(dǎo)角是解決本題的關(guān)鍵.12.(2022秋·山東德州·七年級(jí)??计谥校┱?qǐng)閱讀小明同學(xué)在學(xué)習(xí)平行線這章知識(shí)點(diǎn)時(shí)的一段筆記,然后解決問題.小明:老師說在解決有關(guān)平行線的問題時(shí),如果無法直接得到角的關(guān)系,就需要借助輔助線來幫助解答,今天老師介紹了一個(gè)“美味”的模型一“豬蹄模型”.即已知:如圖1,,為、之間一點(diǎn),連接,得到.求證:,小明筆記上寫出的證明過程如下:證明:過點(diǎn)作,∴,∵,,∴∴,∵,∴,請(qǐng)你利用“豬蹄模型”得到的結(jié)論或解題方法,完成下面的兩個(gè)問題.(1)如圖2,若,,求的度數(shù);(2)靈活應(yīng)用:如圖3,一條河流的兩岸當(dāng)小船行駛到河中點(diǎn)時(shí),與兩岸碼頭B、D所形成的夾角為(即),當(dāng)小船行駛到河中點(diǎn)時(shí),恰好滿足,,請(qǐng)你直接寫出此時(shí)點(diǎn)與碼頭B、D所形成的夾角=_________.【答案】(1)240°(2)32°【分析】(1)過E點(diǎn)作,過F點(diǎn)作,易得,,,則有∠B=∠BEN,∠NEF=∠EFM,∠C+∠CFM=180°,根據(jù)∠BEN+∠NEF=∠BEF,∠EFM+∠CFM=∠EFC,∠BEF=60°,即有∠B+∠EFC+∠C=(∠B+∠EFM)+(∠CFM+∠C)=∠BEF+180°=240°;(2)根據(jù)題目的證明方法可得∠F=∠ABF+∠CDF,∠E=∠ABE+∠CDE,由∠ABF=∠EBF,∠EDF=∠CDF,可得∠ABF=∠ABE,∠CDF=∠CDE,即有∠F=∠ABF+∠CDF=(∠ABE+∠CDE)=,問題得解.(1)過E點(diǎn)作,過F點(diǎn)作,如圖,∵,,,∴,,,∴∠B=∠BEN,∠NEF=∠EFM,∠C+∠CFM=180°,∵∠BEN+∠NEF=∠BEF,∠EFM+∠CFM=∠EFC,∠BEF=60°,∴∠B+∠EFC+∠C=(∠B+∠EFM)+(∠CFM+∠C)=∠BEF+180°=240°,故答案為:240°;(2)根據(jù)題目中“豬蹄模型”的證明方法,同理可以證明:∠F=∠ABF+∠CDF,∠E=∠ABE+∠CDE,∵∠E=64°,∴∠ABE+∠CDE=64°,∵∠ABF=∠EBF,∠EDF=∠CDF,∴∠ABF=∠ABE,∠CDF=∠CDE,∵∠F=∠ABF+∠CDF,∴∠F=∠ABF+∠CDF=(∠ABE+∠CDE)=,故答案為:32°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)是解答本題的關(guān)鍵.考點(diǎn)5:圖形平移性質(zhì)的應(yīng)用典例:16.(2022·全國·七年級(jí)專題練習(xí))如圖,在三角形中,,,,,將三角形沿方向平移得到三角形,且與相交于點(diǎn),連接.(1)陰影部分的周長為______;(2)若三角形的面積比三角形的面積大,則的值為______.【答案】
####【分析】(1)由平移的性質(zhì)可得出,.再根據(jù),即可求出陰影部分的周長;(2)過A點(diǎn)作于,利用等面積法計(jì)算出,由,,即可得出,再根據(jù),即可列出關(guān)于a的等式,解出a即可.【詳解】(1)∵三角形沿方向平移得到三角形,,.,陰影部分的周長為,故答案為:;(2)過A點(diǎn)作于,如圖,∵∠BAC=90°∴,∴.∵,∴.∵,∴,∴,即.∵三角形的面積比三角形的面積大,即,∴,解得.故答案為:.方法或規(guī)律點(diǎn)撥本題考查平移的性質(zhì),平行四邊形的面積,三角形的面積.掌握平移的性質(zhì)是解決(1)的關(guān)鍵,正確作出輔助線是解決(2)的關(guān)鍵.鞏固練習(xí)1.(2022秋·遼寧丹東·八年級(jí)??计谀┤鐖D,將沿BC方向平移3cm得到,若的周長為24cm,則四邊形ABFD的周長為(
)A.30cm B.24cm C.27cm D.33cm【答案】A【分析】根據(jù)平移的性質(zhì)可得DF=AC,再求出四邊形ABFD的周長等于△ABC的周長加上AD與CF,然后計(jì)算即可得解.【詳解】解:∵△ABC沿BC方向平移3cm得到△DEF,∴DF=AC,AD=CF=3cm,∴=30(cm)故選:A.【點(diǎn)睛】本題主要考查了平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等,確定出四邊形的周長與△ABC的周長的關(guān)系是解題的關(guān)鍵.2.(2022春·上海靜安·七年級(jí)上海市市西中學(xué)??计谥校┤鐖D,將周長為厘米的沿射線方向平移厘米得到,那么四邊形的周長為___________厘米.【答案】【分析】利用平移的性質(zhì)得到,然后根據(jù)可計(jì)算出四邊形的周長.【詳解】解:沿射線方向平移厘米得到,,,cm.即四邊形的周長為.故答案為.【點(diǎn)睛】本題考查了平移的性質(zhì):把一個(gè)圖形整體沿某一直線方向移動(dòng),會(huì)得到一個(gè)新的圖形,新圖形與原圖形的形狀和大小完全相同.新圖形中的每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這兩個(gè)點(diǎn)是對(duì)應(yīng)點(diǎn).連接各組對(duì)應(yīng)點(diǎn)的線段平行或共線且相等.3.(2022春·上海寶山·七年級(jí)校聯(lián)考期末)已知線段的長度為9厘米,現(xiàn)將線段向左平移5厘米得到線段,點(diǎn)A對(duì)應(yīng)點(diǎn)C,點(diǎn)B對(duì)應(yīng)點(diǎn)D,且A,B,C,D在同一直線上,那么的長度是____厘米【答案】【分析】根據(jù)平移的性質(zhì)直接求解即可.【詳解】解:經(jīng)過平移,將線段向左平移5厘米得到線段,如圖,∴(厘米),而(厘米),則(厘米).故答案為:14.【點(diǎn)睛】本題利用了線段的和差關(guān)系,平移的基本性質(zhì):①平移不改變圖形的形狀和大??;②經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行(或在同一直線時(shí))且相等,對(duì)應(yīng)線段平行(或在同一直線時(shí))且相等.4.(2022秋·廣東東莞·七年級(jí)東莞市光明中學(xué)校考期中)如圖,某酒店重新裝修后,準(zhǔn)備在大廳主樓梯上鋪設(shè)紅色地毯,其側(cè)面如圖所示,則需地毯__米.【答案】8【分析】根據(jù)平移的性質(zhì),即可求出大廳主樓梯上鋪設(shè)紅色地毯的長.【詳解】解:由平移的性質(zhì)可知,所需要的地毯的長度為,故答案為:8.【點(diǎn)睛】本題考查了生活中的平移現(xiàn)象,熟練掌握平移的性質(zhì)是解題的關(guān)鍵.5.(2022秋·北京海淀·七年級(jí)??茧A段練習(xí))如圖,一塊邊長為8米的正方形土地,在上面修了三條道路,寬都是1米,其余部分種上各種花草,則種植花草的面積是____平方米.【答案】42【分析】直接利用平移方法,將三條道路平移到圖形的一側(cè),進(jìn)而求出即可.【詳解】解:(平方米).故種植花草的面積是42平方米.故答案為:42.【點(diǎn)睛】本題考查了生活中的平移現(xiàn)象,圖形的平移只改變圖形的位置,而不改變圖形的形狀和大小,學(xué)生易混淆圖形的平移與旋轉(zhuǎn)或翻轉(zhuǎn),以致錯(cuò)誤.6.(2022春·山東青島·九年級(jí)統(tǒng)考期中)如圖,兩個(gè)直角三角形重疊在一起,將其中一個(gè)沿點(diǎn)到點(diǎn)的方向平移到的位置,,,平移距離為6,則陰影部分的面積為______.【答案】48【分析】先利用平移和平行線截線段成比例定理求出線段的長度,再利用面積公式求出兩個(gè)三角形的面積,再求差即可.【詳解】由平行可知,,則∵∴∴∴故填48.【點(diǎn)睛】本題考查平移和平行線截線段成比例定理,關(guān)鍵是求出所需線段的長度.7.(2022春·黑龍江哈爾濱·七年級(jí)哈爾濱德強(qiáng)學(xué)校校考期中)如圖,,將直角三角形沿著射線方向平移4cm,得到三角形,已知,,則陰影部分面積為______.【答案】【分析】根據(jù)平移的性質(zhì)求出的長,再根據(jù)梯形面積公式求解即可.【詳解】解:由平移的性質(zhì)可得,∴,∵,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了平移的性質(zhì),梯形面積,熟知平移的性質(zhì)是解題的關(guān)鍵3.8.(2022春·黑龍江大慶·九年級(jí)統(tǒng)考期中)如圖,直角三角形的周長為,在其內(nèi)部有個(gè)小直角三角形,且這個(gè)小直角三角形都有一條邊與平行,則這個(gè)小直角三角形周長的和為_________.【答案】【分析】根據(jù)題意得這個(gè)小直角三角形都有一條邊與平行,則有小直角三角形中與平行的邊的和等于,與平行的邊的和等于BC,則小直角三角形的周長和等于直角的周長,據(jù)此即可求解.【詳解】解:因?yàn)檫@個(gè)小直角三角形都有一條邊與平行,,所以這個(gè)小直角三角形都有一條邊與平行,這5個(gè)小直角三角形周長的和等于直角的周長,故答案為:【點(diǎn)睛】本題主要考查了平移的應(yīng)用,正確理解小直角三角形的周長和等于直角的周長是解題的關(guān)鍵.9.(2022春·山東青島·七年級(jí)統(tǒng)考期中)將棱長為的正方體毛坯,切去一個(gè)棱長為的小正方體,得到如圖所示的零件,則該零件的表面積是___________.【答案】54【分析】根據(jù)平移的性質(zhì),從正方體毛坯一角挖去一個(gè)小正方體得到的零件的表面積等于原正方體表面積.【詳解】解:挖去一個(gè)棱長為的小正方體,得到的圖形與原圖形表面積相等,則表面積是.故答案為:54.【點(diǎn)睛】本題考查了整體的思想及簡單幾何體表面積的計(jì)算能力.利用平移的性質(zhì)是解題的關(guān)鍵.10.(2022春·吉林長春·九年級(jí)校考階段練習(xí))如圖,已知矩形,,,在其矩形內(nèi)部有三個(gè)小矩形,則這三個(gè)小矩形的周長之和為______.【答案】【分析】根據(jù)平移的性質(zhì),可知三個(gè)矩形的周長等于矩形的周長.【詳解】如圖所示:三個(gè)小矩形的周長等于矩形的周長∴三個(gè)小矩形的周長等于故答案為:.【點(diǎn)睛】本題考查生活中的平移現(xiàn)象,掌握平移的性質(zhì)是正確解題的關(guān)鍵.11.(2022·全國·七年級(jí)專題練習(xí))如圖,一樓梯的高度為6.4m,水平寬度為8.6m,現(xiàn)要在樓梯的表面鋪一種地毯,此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南省職工醫(yī)院護(hù)理人員招聘60人模擬試卷及答案詳解1套
- 2025呂梁市事業(yè)單位招聘博士研究生考前自測高頻考點(diǎn)模擬試題及答案詳解(歷年真題)
- 版雜志發(fā)行合同6篇
- 2025年甘肅省定西市人力資源有限公司招聘工作人員考前自測高頻考點(diǎn)模擬試題及一套參考答案詳解
- 2025年甘肅省隴南市徽縣中醫(yī)醫(yī)院醫(yī)師招聘模擬試卷及答案詳解(奪冠)
- 2025春季中國誠通控股集團(tuán)有限公司校園招聘49人模擬試卷及答案詳解(必刷)
- 2025年春季福建華南女子職業(yè)學(xué)院人才招聘15人模擬試卷附答案詳解(突破訓(xùn)練)
- 2025湖南永州市寧遠(yuǎn)縣人民醫(yī)院公開招聘備案制專業(yè)技術(shù)人員50人考前自測高頻考點(diǎn)模擬試題附答案詳解
- 2025貴州貴陽貴安統(tǒng)一招聘中小學(xué)(幼兒園)教師553人考前自測高頻考點(diǎn)模擬試題及答案詳解(歷年真題)
- 2025年安慶宿松縣二郎鎮(zhèn)選聘石咀村村級(jí)后備干部2人考前自測高頻考點(diǎn)模擬試題參考答案詳解
- 《機(jī)器學(xué)習(xí)》課件-第3章 監(jiān)督學(xué)習(xí)
- 山東省濟(jì)南市2025屆中考數(shù)學(xué)真題(含答案)
- 醫(yī)療機(jī)構(gòu)醫(yī)療質(zhì)量安全專項(xiàng)整治行動(dòng)方案
- 基于SprintBoot的大學(xué)生實(shí)習(xí)管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
- 外踝撕脫骨折課件
- 鋼架油漆翻新施工方案(3篇)
- 數(shù)字平臺(tái)治理 課件 第五章 數(shù)字平臺(tái)生態(tài)治理
- 2024-2025學(xué)年河南省省直轄縣級(jí)行政單位人教PEP版(2024)三年級(jí)下冊(cè)6月期末測試英語試卷(含答案)
- 婦科葫蘆灸中醫(yī)適宜技術(shù)
- 陜縣支建煤礦“7.29”搶險(xiǎn)救援案例-圖文.課件
- 心血管疾病研究進(jìn)展
評(píng)論
0/150
提交評(píng)論