輸入兩個正整數(shù)m和n,求最小公倍數(shù),與最大公約數(shù)_第1頁
輸入兩個正整數(shù)m和n,求最小公倍數(shù),與最大公約數(shù)_第2頁
輸入兩個正整數(shù)m和n,求最小公倍數(shù),與最大公約數(shù)_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

輸入兩個正整數(shù)m和n,求其最大公約數(shù)和最小公倍數(shù).<1>用輾轉(zhuǎn)相除法求最大公約數(shù)算法描述:m對n求余為a,若a不等于0則m<-n,n<-a,繼續(xù)求余否則n為最大公約數(shù)<2>最小公倍數(shù)=兩個數(shù)的積/最大公約數(shù)

#includeintmain()

{

intm,n;intm_cup,n_cup,res;/*被除數(shù),除數(shù),余數(shù)*/

printf("Entertwointeger:\n");

scanf("%d%d",&m,&n);

if(m>0&&n>0)

{

m_cup=m;

n_cup=n;

res=m_cup%n_cup;

while(res!=0)

{

m_cup=n_cup;

n_cup=res;

res=m_cup%n_cup;

}

printf("Greatestcommondivisor:%d\n",n_cup);

printf("Leasecommonmultiple:%d\n",m*n/n_cup);

}

elseprintf("Error!\n");

return0;

}

★關(guān)于輾轉(zhuǎn)相除法,搜了一下,在我國古代的《九章算術(shù)》中就有記載,現(xiàn)摘錄如下:約分術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也。以等數(shù)約之?!逼渲兴f的“等數(shù)”,就是最大公約數(shù)。求“等數(shù)”的辦法是“更相減損”法,實際上就是輾轉(zhuǎn)相除法。輾轉(zhuǎn)相除法求最大公約數(shù),是一種比較好的方法,比較快。對于52317和75569兩個數(shù),你能迅速地求出它們的最大公約數(shù)嗎?一般來說你會找一找公共的使因子,這題可麻煩了,不好找,質(zhì)因子大?,F(xiàn)在教你用輾轉(zhuǎn)相除法來求最大公約數(shù)。先用較大的75569除以52317,得商1,余數(shù)23252,再以52317除以23252,得商2,余數(shù)是5813,再用23252做被除數(shù),5813做除數(shù),正好除盡得商數(shù)4。這樣5813就是75569和52317的最大公約數(shù)。你要是用分解使因數(shù)的辦法,肯定找不到。那么,這輾轉(zhuǎn)相除法為什么能得到最大公約數(shù)呢?下面我就給大伙談?wù)?。比如說有要求a、b兩個整數(shù)的最大公約數(shù),a>b,那么我們先用a除以b,得到商8,余數(shù)r1:a÷b=q1…r1我們當(dāng)然也可以把上面這個式子改寫成乘法式:a=bq1+r1------l)如果r1=0,那么b就是a、b的最大公約數(shù)3。要是r1≠0,就繼續(xù)除,用b除以r1,我們也可以有和上面一樣的式子:b=r1q2+r2-------2)如果余數(shù)r2=0,那么r1就是所求的最大公約數(shù)3。為什么呢?因為如果2)式變成了b=r1q2,那么b1r1的公約數(shù)就一定是a1b的公約數(shù)。這是因為一個數(shù)能同時除盡b和r1,那么由l)式,就一定能整除a,從而也是a1b的公約數(shù)。反過來,如果一個數(shù)d,能同時整除a1b,那么由1)式,也一定能整除r1,從而也有d是b1r1的公約數(shù)。這樣,a和b的公約數(shù)與b和r1的公約數(shù)完全一樣,那么這兩對的最大公約數(shù)也一定相同。那b1r1的最大公約數(shù),在r1=0時,不就是r1嗎?所以a和b的最大公約數(shù)也是r1了。有人會說,那r2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論