天津市和平區(qū)名校2025屆高三第四次適應(yīng)性訓(xùn)練數(shù)學(xué)試題試卷含解析_第1頁
天津市和平區(qū)名校2025屆高三第四次適應(yīng)性訓(xùn)練數(shù)學(xué)試題試卷含解析_第2頁
天津市和平區(qū)名校2025屆高三第四次適應(yīng)性訓(xùn)練數(shù)學(xué)試題試卷含解析_第3頁
天津市和平區(qū)名校2025屆高三第四次適應(yīng)性訓(xùn)練數(shù)學(xué)試題試卷含解析_第4頁
天津市和平區(qū)名校2025屆高三第四次適應(yīng)性訓(xùn)練數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

天津市和平區(qū)名校2025屆高三第四次適應(yīng)性訓(xùn)練數(shù)學(xué)試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件2.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.3.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12804.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.5.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.6.A. B. C. D.7.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或48.已知函數(shù)f(x)=,若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C. D.9.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.10.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.11.要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.12.()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項和,若,,則_______.14.已知橢圓,,若橢圓上存在點使得為等邊三角形(為原點),則橢圓的離心率為_________.15.函數(shù)的圖象在處的切線方程為__________.16.曲線在點處的切線方程是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.18.(12分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.19.(12分)設(shè)函數(shù).(1)當時,解不等式;(2)設(shè),且當時,不等式有解,求實數(shù)的取值范圍.20.(12分)某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態(tài)分布,則.21.(12分)管道清潔棒是通過在管道內(nèi)釋放清潔劑來清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.22.(10分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由大邊對大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎(chǔ)知識,考查邏輯推理能力,是基礎(chǔ)題.2.C【解析】

根據(jù)雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.3.A【解析】

根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.求二項展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).4.A【解析】

利用計算即可,其中表示事件A所包含的基本事件個數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.本題考查古典概型的概率計算問題,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.5.A【解析】

根據(jù)復(fù)數(shù)的乘法運算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A本題考查復(fù)數(shù)的運算和復(fù)數(shù)的分類,屬基礎(chǔ)題.6.A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.7.C【解析】

對a進行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運算和數(shù)學(xué)抽象的核心素養(yǎng).8.D【解析】

由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結(jié)合圖象即可得解.【詳解】若關(guān)于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數(shù)y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設(shè)切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導(dǎo)數(shù)的幾何意義及計算能力、觀察能力,屬于難題.9.D【解析】

通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.10.C【解析】

對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.11.C【解析】

根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學(xué)都安排在上午;②語文和數(shù)學(xué)一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進行討論:①語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學(xué)都一個安排在上午,一個安排在下午.語文和數(shù)學(xué)一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.本題考查排列、組合的應(yīng)用,涉及分類計數(shù)原理的應(yīng)用,屬于中等題.12.B【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】試題分析:因為是等差數(shù)列,所以,即,又,所以,所以.故答案為1.【考點】等差數(shù)列的基本性質(zhì)【名師點睛】在等差數(shù)列五個基本量,,,,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項公式、前項和公式列出關(guān)于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應(yīng)用.14.【解析】

根據(jù)題意求出點N的坐標,將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.本題考查了橢圓的標準方程及幾何性質(zhì),屬于中檔題.15.【解析】

利用導(dǎo)數(shù)的幾何意義,對求導(dǎo)后在計算在處導(dǎo)函數(shù)的值,再利用點斜式列出方程化簡即可.【詳解】,則切線的斜率為.又,所以函數(shù)的圖象在處的切線方程為,即.故答案為:本題主要考查了根據(jù)導(dǎo)數(shù)的幾何意義求解函數(shù)在某點處的切線方程問題,需要注意求導(dǎo)法則與計算,屬于基礎(chǔ)題.16.【解析】

利用導(dǎo)數(shù)的幾何意義計算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本計算能力,要注意在某點處的切線與過某點的切線的區(qū)別,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)B(2)【解析】

(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用,屬于中檔題.18.(1);(2).【解析】

(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)本題主要考查了正余弦定理的應(yīng)用,基本不等式的應(yīng)用,三角函數(shù)的值域等,考查了學(xué)生運算求解能力.19.(1);(2).【解析】

(1)通過分類討論去掉絕對值符號,進而解不等式組求得結(jié)果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構(gòu)造不等式求得結(jié)果.【詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數(shù)的取值范圍是.本題考查絕對值不等式的求解、根據(jù)不等式有解求解參數(shù)范圍的問題;關(guān)鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問題.20.(1)見解析(2)需要,見解析【解析】

(1)由零件的長度服從正態(tài)分布且相互獨立,零件的長度滿足即為合格,則每一個零件的長度合格的概率為,滿足二項分布,利用補集的思想求得,再根據(jù)公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當充分大時,,所以為了使損失盡量小,小張需要檢查其余所有零件.本題考查正態(tài)分布的應(yīng)用,考查二項分布的期望,考查補集思想的應(yīng)用,考查分析能力與數(shù)據(jù)處理能力.21.(1);(2).【解析】

(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導(dǎo)數(shù)求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設(shè),則,令,則,即.設(shè),且,則當時,,所以單調(diào)遞減;當時,,所以單調(diào)遞增,所以當時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.本題考查導(dǎo)數(shù)在實際問題中的應(yīng)用,考查學(xué)生的數(shù)學(xué)運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論