山東省青州二中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
山東省青州二中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
山東省青州二中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
山東省青州二中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
山東省青州二中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省青州二中2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)為,為拋物線上一點(diǎn).若,則的面積為()A. B.C. D.2.已知“”的必要不充分條件是“或”,則實(shí)數(shù)的最小值為()A. B.C. D.3.已知直線,橢圓.若直線l與橢圓C交于A,B兩點(diǎn),則線段AB的中點(diǎn)的坐標(biāo)為()A. B.C. D.4.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對(duì)立事件 B.與互斥C.與相等 D.5.閱讀程序框圖,該算法的功能是輸出A.數(shù)列的第4項(xiàng) B.數(shù)列的第5項(xiàng)C.數(shù)列的前4項(xiàng)的和 D.數(shù)列的前5項(xiàng)的和6.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形個(gè)數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形,則的表達(dá)式為()A. B.C. D.7.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d8.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交9.已知為兩條不同的直線,為兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,則B.若,則C.若,則D.若,則10.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.11.直線過點(diǎn)且與雙曲線僅有一個(gè)公共點(diǎn),則這樣的直線有()A.1條 B.2條C.3條 D.4條12.如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的焦距為______.14.過點(diǎn),且垂直于的直線方程為_______________.15.設(shè)數(shù)列的前n項(xiàng)和為,若,且是等差數(shù)列.則的值為__________16.橢圓的右焦點(diǎn)是,兩點(diǎn)是橢圓的左頂點(diǎn)和上頂點(diǎn),若△是直角三角形,則橢圓的離心率是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項(xiàng)公式;(2)已知數(shù)列的前項(xiàng)和為,求.18.(12分)已知平面內(nèi)兩點(diǎn).(1)求過點(diǎn)且與直線平行的直線的方程;(2)求線段的垂直平分線方程.19.(12分)設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長為4,離心率為(1)求橢圓的方程;(2)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線與軸的交點(diǎn),點(diǎn)且(為原點(diǎn)),求直線的斜率20.(12分)已知橢圓的離心率為,橢圓的上頂點(diǎn)到焦點(diǎn)的距離為.(1)求橢圓的方程;(2)若直線與橢圓相交于、兩點(diǎn)(、不是左、右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn).21.(12分)在平面直角坐標(biāo)系中,點(diǎn),直線軸,垂足為H,,圓N過點(diǎn)O,與l的公共點(diǎn)的軌跡為(1)求的方程;(2)過M的直線與交于A,B兩點(diǎn),若,求22.(10分)已知三角形的三個(gè)頂點(diǎn),求邊所在直線的方程,以及該邊上中線所在直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先由拋物線方程求出點(diǎn)的坐標(biāo),準(zhǔn)線方程為,再由可求得點(diǎn)的橫坐標(biāo)為4,從而可求出點(diǎn)的縱坐標(biāo),進(jìn)而可求出的面積【詳解】由題意可得點(diǎn)的坐標(biāo),準(zhǔn)線方程為,因?yàn)闉閽佄锞€上一點(diǎn),,所以點(diǎn)的橫坐標(biāo)為4,當(dāng)時(shí),,所以,所以的面積為,故選:D2、A【解析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【詳解】,解得或,因?yàn)椤啊钡谋匾怀浞謼l件是“或”,所以.實(shí)數(shù)的最小值為.故選:A3、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理可得,進(jìn)而得出中點(diǎn)的橫坐標(biāo),代入直線方程求出中點(diǎn)的縱坐標(biāo)即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點(diǎn)中點(diǎn)的橫坐標(biāo)為:,所以中點(diǎn)的縱坐標(biāo)為:,即線段AB的中點(diǎn)的坐標(biāo)為.故選:B4、D【解析】利用互斥事件和對(duì)立事件的定義分析判斷即可【詳解】因?yàn)閽仈S兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對(duì)立,也不相等,,所以ABC錯(cuò)誤,D正確,故選:D5、B【解析】分析:模擬程序的運(yùn)行,依次寫出每次循環(huán),直到滿足條件,退出循環(huán),輸出A的值即可詳解:模擬程序的運(yùn)行,可得:

A=0,i=1執(zhí)行循環(huán)體,,

不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,滿足條件,退出循環(huán),輸出A的值為31.觀察規(guī)律可得該算法的功能是輸出數(shù)列{}的第5項(xiàng).所以B選項(xiàng)是正確的.點(diǎn)睛:模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的A,i的值,當(dāng)i=6時(shí)滿足條件,退出循環(huán),輸出A的值,觀察規(guī)律即可得解.6、D【解析】先分別觀察給出正方體的個(gè)數(shù)為:1,,,,總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個(gè)發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點(diǎn)睛】本題主要考查了歸納推理,屬于中檔題7、A【解析】結(jié)合不等式的性質(zhì)確定正確答案.【詳解】A選項(xiàng),若且,則,所以A選項(xiàng)正確.B選項(xiàng),若,則,所以B選項(xiàng)錯(cuò)誤.C選項(xiàng),如,但,所以C選項(xiàng)錯(cuò)誤.D選項(xiàng),如,但,所以D選項(xiàng)錯(cuò)誤.故選:A8、B【解析】以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示求出,再利用向量的坐標(biāo)運(yùn)算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長為1.以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則.設(shè),則,取.,.故選:B【點(diǎn)睛】本題考查了空間向量垂直的坐標(biāo)表示、空間向量的坐標(biāo)表示、空間向量共線定理,屬于基礎(chǔ)題.9、D【解析】根據(jù)空間里面直線與平面、平面與平面位置關(guān)系的相關(guān)定理逐項(xiàng)判斷即可.【詳解】A,若,則或異面,故該選項(xiàng)錯(cuò)誤;B,若,則或相交,故該選項(xiàng)錯(cuò)誤;C,若,則α,β不一定垂直,故該選項(xiàng)錯(cuò)誤;D,若,則利用面面垂直的性質(zhì)可得,故該選項(xiàng)正確.故選:D.10、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.11、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時(shí),直線過雙曲線的右頂點(diǎn),方程為,滿足題意;當(dāng)直線的斜率存在時(shí),若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個(gè)公共點(diǎn).綜上可得,滿足條件的直線共有3條.故選:C.【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個(gè)易錯(cuò)點(diǎn),著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.12、C【解析】過點(diǎn)A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點(diǎn)A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因?yàn)閨AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由求出即可.【詳解】可化為,設(shè)焦距為,則,則焦距故答案為:14、【解析】求出,可得垂直于的直線的斜率為,再利用點(diǎn)斜式可得結(jié)果.【詳解】因?yàn)?,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點(diǎn)睛】對(duì)直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯(cuò),特別是容易遺忘斜率不存在的情況,這一點(diǎn)一定不能掉以輕心.15、52【解析】根據(jù)給定條件求出,再求出數(shù)列的通項(xiàng)即可計(jì)算作答.【詳解】依題意,因是等差數(shù)列,則其公差,于是得,,當(dāng)時(shí),,而滿足上式,因此,,所以.故答案為:5216、【解析】由題設(shè)易知,應(yīng)用斜率的兩點(diǎn)式及橢圓參數(shù)關(guān)系可得,進(jìn)而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項(xiàng)公式則可得,進(jìn)而得到的通項(xiàng)公式;(2)由(1)把的通項(xiàng)公式代入,得到,利用乘公比錯(cuò)位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項(xiàng),2為公差的等差數(shù)列,,即.【小問2詳解】設(shè),則由(1)知,所以,,兩式相減,則,所以.18、(1)(2)【解析】(1)求出直線的斜率,利用點(diǎn)斜式方程求解即可;(2)求出線段的中點(diǎn)坐標(biāo),求出斜率然后求解垂直平分線方程.試題解析:(1)∵點(diǎn)∴∴由點(diǎn)斜式得直線的方程(2)∵點(diǎn)∴線段的中點(diǎn)坐標(biāo)為∵∴線段的垂直平分線的斜率為∴由點(diǎn)斜式得線段的垂直平分線的方程為19、(1)(2)或【解析】(1)根據(jù)已知條件求得,由此求得橢圓方程.(2)設(shè)出直線的方程,并與橢圓方程聯(lián)立,求得點(diǎn)坐標(biāo),根據(jù)列方程,化簡求得直線的斜率.【小問1詳解】設(shè)橢圓的半焦距為,依題意,,又,可得,.所以,橢圓的方程為小問2詳解】由題意,設(shè).設(shè)直線的斜率為,又,則直線的方程為,與橢圓方程聯(lián)立整理得,可得,代入得,進(jìn)而直線的斜率.在中,令,得,所以直線的斜率為由,得,化簡得,從而所以,直線的斜率為或20、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件求出、、的值,可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出關(guān)于、所滿足的等式,然后化簡直線的方程,即可求得直線所過定點(diǎn)的坐標(biāo).【小問1詳解】解:橢圓上頂點(diǎn)到焦點(diǎn)距離,又橢圓離心率為,故,,因此,橢圓方程為.【小問2詳解】解:設(shè)、,由題意可知且,橢圓的右頂點(diǎn)為,則,,因?yàn)橐詾橹睆降膱A過橢圓的右頂點(diǎn),所以有,則,即,聯(lián)立,,即,①由韋達(dá)定理得,,所以,,化簡得,即或,均滿足①式.當(dāng)時(shí),直線,恒過定點(diǎn),舍去;當(dāng)時(shí),直線,恒過定點(diǎn).綜上所述,直線過定點(diǎn).【點(diǎn)睛】方法點(diǎn)睛:求解直線過定點(diǎn)問題常用方法如下:(1)“特殊探路,一般證明”:即先通過特殊情況確定定點(diǎn),再轉(zhuǎn)化為有方向、有目的的一般性證明;(2)“一般推理,特殊求解”:即設(shè)出定點(diǎn)坐標(biāo),根據(jù)題設(shè)條件選擇參數(shù),建立一個(gè)直線系或曲線的方程,再根據(jù)參數(shù)的任意性得到一個(gè)關(guān)于定點(diǎn)坐標(biāo)的方程組,以這個(gè)方程組的解為坐標(biāo)的點(diǎn)即為所求點(diǎn);(3)求證直線過定點(diǎn),常利用直線的點(diǎn)斜式方程或截距式來證明.21、(1);(2).【解析】(1)設(shè)出圓N與l的公共點(diǎn)坐標(biāo),再探求出點(diǎn)N的坐標(biāo),并由圓的性質(zhì)列出方程化簡即得.(2)設(shè)出直線AB的方程,與的方程聯(lián)立,結(jié)合已知條件并借助韋達(dá)定理計(jì)算作答.【小問1詳解】設(shè)為圓N

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論