




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省瀘州市2025屆數(shù)學高一下期末教學質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.△中,已知,,,如果△有兩組解,則的取值范圍()A. B. C. D.3.△ABC中,三個內(nèi)角A,B,C所對應的邊分別為a,b,c,若c=,b=1,∠B=,則△ABC的形狀為()A.等腰直角三角形 B.直角三角形C.等邊三角形 D.等腰三角形或直角三角形4.已知三個內(nèi)角、、的對邊分別是,若,則等于()A. B. C. D.5.圓與直線的位置關系是()A.相交 B.相切 C.相離 D.直線過圓心6.已知直線是平面的斜線,則內(nèi)不存在與(
)A.相交的直線 B.平行的直線C.異面的直線 D.垂直的直線7.已知圓:關于直線對稱的圓為圓:,則直線的方程為A. B. C. D.8.已知直線:是圓的對稱軸.過點作圓的一條切線,切點為,則()A.2 B. C.6 D.9.在平面直角坐標系中,已知點,點,直線:.如果對任意的點到直線的距離均為定值,則點關于直線的對稱點的坐標為()A. B. C. D.10.已知數(shù)列滿足遞推關系,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設y=f(x)是定義域為R的偶函數(shù),且它的圖象關于點(2,0)對稱,若當x∈(0,2)時,f(x)=x2,則f(19)=_____12.已知正數(shù)、滿足,則的最小值是________.13.在梯形中,,,設,,則__________(用向量表示).14.若不等式的解集為空集,則實數(shù)的能為___________.15.若圓弧長度等于圓內(nèi)接正六邊形的邊長,則該圓弧所對圓心角的弧度數(shù)為________.16.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在中,點在邊上,為的平分線,.(1)求;(2)若,,求.18.數(shù)列滿足:.(1)求證:為等比數(shù)列;(2)求的通項公式.19.已知,,(1)若,求;(2)求的最大值,并求出對應的x的值.20.請你幫忙設計2010年玉樹地震災區(qū)小學的新校舍,如圖,在學校的東北力有一塊地,其中兩面是不能動的圍墻,在邊界內(nèi)是不能動的一些體育設施.現(xiàn)準備在此建一棟教學樓,使樓的底面為一矩形,且靠圍墻的方向須留有5米寬的空地,問如何設計,才能使教學樓的面積最大?21.甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.(1)分別求出兩人得分的平均數(shù)與方差;(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓練成績作出評價.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù),,可判斷所在象限.【詳解】,在三四象限.,在一三象限,故在第三象限答案為C【點睛】本題考查了三角函數(shù)在每個象限的正負,屬于基礎題型.2、D【解析】由正弦定理得A+C=180°-60°=120°,
由題意得:A有兩個值,且這兩個值之和為180°,
∴利用正弦函數(shù)的圖象可得:60°<A<120°,
若A=90,這樣補角也是90°,一解,不合題意,<sinA<1,
∵x=sinA,則2<x<故選D3、D【解析】試題分析:在中,由正弦定理可得,因為,所以或,所以或,所以的形狀一定為等腰三角形或直角三角形,故選D.考點:正弦定理.4、D【解析】
根據(jù)正弦定理把邊化為對角的正弦求解.【詳解】【點睛】本題考查正弦定理,邊角互換是正弦定理的重要應用,注意增根的排除.5、B【解析】
求出圓心到直線的距離與半徑比較.【詳解】圓的圓心是,半徑為1,圓心到直線即的距離為,直線與圓相切.故選:B.【點睛】本題考查直線與圓人位置關系,判斷方法是:利用圓心到直線的距離與半徑的關系判斷.6、B【解析】
根據(jù)平面的斜線的定義,即可作出判定,得到答案.【詳解】由題意,直線是平面的斜線,由斜線的定義可知與平面相交但不垂直的直線叫做平面的斜線,所以在平面內(nèi)肯定不存在與直線平行的直線.故答案為:B【點睛】本題主要考查了直線與平面的位置關系的判定及應用,其中解答中熟記平面斜線的定義是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.7、A【解析】
根據(jù)對稱性,求得,求得圓的圓心坐標,再根據(jù)直線l為線段C1C2的垂直平分線,求得直線的斜率,即可求解,得到答案.【詳解】由題意,圓的方程,可化為,根據(jù)對稱性,可得:,解得:或(舍去,此時半徑的平方小于0,不符合題意),此時C1(0,0),C2(-1,2),直線C1C2的斜率為:,由圓C1和圓C2關于直線l對稱可知:直線l為線段C1C2的垂直平分線,所以,解得,直線l又經(jīng)過線段C1C2的中點(,1),所以直線l的方程為:,化簡得:,故選A【點睛】本題主要考查了圓與圓的位置關系的應用,其中解答中熟記兩圓的位置關系,合理應用圓對稱性是解答本題的關鍵,其中著重考查了推理與運算能力,屬于基礎題.8、C【解析】試題分析:直線l過圓心,所以,所以切線長,選C.考點:切線長9、B【解析】
利用點到直線的距離公式表示出,由對任意的點到直線的距離均為定值,從而可得,求得直線的方程,再利用點關于直線對稱的性質(zhì)即可得到對稱點的坐標?!驹斀狻坑牲c到直線的距離公式可得:點到直線的距離由于對任意的點到直線的距離均為定值,所以,即,所以直線的方程為:設點關于直線的對稱點的坐標為故,解得:,所以設點關于直線的對稱點的坐標為故答案選B【點睛】本題主要考查點關于直線對稱的對稱點的求法,涉及點到直線的距離,兩直線垂直斜率的關系,中點公式等知識點,考查學生基本的計算能力,屬于中檔題。10、B【解析】
兩邊取倒數(shù),可得新的等差數(shù)列,根據(jù)等差數(shù)列的通項公式,可得結(jié)果.【詳解】由,所以則,又,所以所以數(shù)列是以2為首項,1為公比的等差數(shù)列所以,則所以故選:B【點睛】本題主要考查由遞推公式得到等差數(shù)列,難點在于取倒數(shù),學會觀察,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、﹣1.【解析】
根據(jù)題意,由函數(shù)的奇偶性與對稱性分析可得,即函數(shù)是周期為的周期函數(shù),據(jù)此可得,再由函數(shù)的解析式計算即可.【詳解】根據(jù)題意,是定義域為的偶函數(shù),則,又由得圖象關于點對稱,則,所以,即函數(shù)是周期為的周期函數(shù),所以,又當時,,則,所以.故答案為:.【點睛】本題考查函數(shù)的奇偶性與周期性的性質(zhì)以及應用,注意分析函數(shù)的周期性,屬于基礎題.12、.【解析】
利用等式得,將代數(shù)式與代數(shù)式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【詳解】,所以,由基本不等式可得,當且僅當時,等號成立,因此,的最小值是,故答案為:.【點睛】本題考查利用基本不等式求最值,解題時要對代數(shù)式進行合理配湊,考查分析問題和解決問題的能力,屬于中等題.13、【解析】
根據(jù)向量減法運算得結(jié)果.【詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【點睛】本題考查向量表示,考查基本化解能力14、【解析】
根據(jù)分式不等式,移項、通分并等價化簡,可得一元二次不等式.結(jié)合二次函數(shù)恒成立條件,即可求得的值.【詳解】將不等式化簡可得即的解集為空集所以對于任意都恒成立將不等式等價化為即恒成立由二次函數(shù)性質(zhì)可知化簡不等式可得解得故答案為:【點睛】本題考查了分式不等式的解法,將不等式等價化為一元二次不等式,結(jié)合二次函數(shù)性質(zhì)解決恒成立問題,屬于中檔題.15、1【解析】
根據(jù)圓的內(nèi)接正六邊形的邊長得出弧長,利用弧長公式即可得到圓心角.【詳解】因為圓的內(nèi)接正六邊形的邊長等于圓的半徑,所以圓弧長所對圓心角的弧度數(shù)為1.故答案為:1【點睛】此題考查弧長公式,根據(jù)弧長求圓心角的大小,關鍵在于熟記圓的內(nèi)接正六邊形的邊長.16、【解析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【詳解】作于,因為為正三棱錐,所以,為中點,連結(jié),則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【點睛】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)令,正弦定理,得,代入面積公式計算得到答案.(2)由題意得到,化簡得到,,再利用面積公式得到答案.【詳解】(1)因為的平分線,令在中,,由正弦定理,得所以.(2)因為,所以,又由,得,,因為,所以所以.【點睛】本題考查了面積的計算,意在考查學生靈活利用正余弦定理和面積公式解決問題的能力.18、(1)見解析(2)【解析】
(1)證明和的比是定值,即得;(2)由(1)的通項公式入手,即得。【詳解】(1)由題得,,即有,相鄰兩項之比為定值3,故為公比的等比數(shù)列;(2)因為為等比數(shù)列,且,則有,整理得的通項公式為.【點睛】本題考查等比數(shù)列的概念,以及求數(shù)列的通項公式,是基礎題。19、(Ⅰ)(II)1,此時【解析】
(Ⅰ)根據(jù)平面向量的坐標運算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐標運算,利用模長公式和三角函數(shù)求出最大值.【詳解】解:(Ⅰ)計算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,當cosx=1,即x=1kπ,k∈Z時,|+|取得最大值為1.【點睛】本題考查了平面向量的坐標運算與數(shù)量積運算問題,是基礎題.20、在線段上取點,過點分別作墻的平行線,建一個長、寬都為17米的正方形,教學樓的面積最大【解析】
可建立如圖所示的平面直角坐標系,根據(jù)截距式寫出AB所在直線方程,然后可設G點的坐標為,再根據(jù)題目中的要求可列出教學樓的面積的表達式,,然后利用一元二次函數(shù)求最值即可.【詳解】解:如圖建立坐標系,可知所在直線方程為,即.設,由可知.∴.由此可知,當時,有最大值289平方米.故在線段上取點,過點分別作墻的平行線,建一個長、寬都為17米的正方形,教學樓的面積最大.【點睛】本題考查一元二次函數(shù)求最值解決實際問題,屬于中檔題21、(1)答案見解析;(2)答案見解析.【解析】試題分析:(1)由圖象可得甲、乙兩人五次測試的成績分別為,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根據(jù)平均數(shù),方差的公式代入計算得解(2)由可知乙的成績較穩(wěn)定.從折線圖看,甲的成績基本呈上升狀態(tài),而乙的成績上下波動,可知甲的成績在不斷提高,而乙的成績則無明顯提高.試
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 時間管理大師課件
- 電子商務員培訓
- 孤獨癥家長培訓
- 二零二五年生物科技股權三方轉(zhuǎn)讓及產(chǎn)品研發(fā)協(xié)議
- 二零二五年度高速公路設施維護合同
- 二零二五年度農(nóng)業(yè)設施拆遷補償合同模板
- 2025版遺產(chǎn)繼承遺產(chǎn)評估協(xié)議-確保價值公平評估
- 二零二五年度房屋施工土地征用與拆遷補償合同范本
- 2025版房地產(chǎn)投資居間服務糾紛解決合同范本
- 2025版商業(yè)綜合體餐飲窗口特許經(jīng)營合同范本
- T/CCASC 4003.1-2022氯堿工業(yè)成本核算方法第1部分:氫氧化鉀
- 2025年中國TPU環(huán)保薄膜市場調(diào)查研究報告
- 碎石開采合作協(xié)議書
- 第8課 大家來合作 課件-2024-2025學年道德與法治一年級下冊統(tǒng)編版
- 青島啤酒經(jīng)銷商協(xié)議合同
- 現(xiàn)場儀表知識培訓課件
- 教師招聘會計試題及答案
- 蘇教譯林版英語二年級上冊教案
- 2025四川建筑安全員C證(專職安全員)考試題庫
- 車間安全隱患課件
- 供應鏈綠色轉(zhuǎn)型策略分析-全面剖析
評論
0/150
提交評論