2021-2022學年四川省自貢市富順三中學、代寺區(qū)中考三模數(shù)學試題含解析_第1頁
2021-2022學年四川省自貢市富順三中學、代寺區(qū)中考三模數(shù)學試題含解析_第2頁
2021-2022學年四川省自貢市富順三中學、代寺區(qū)中考三模數(shù)學試題含解析_第3頁
2021-2022學年四川省自貢市富順三中學、代寺區(qū)中考三模數(shù)學試題含解析_第4頁
2021-2022學年四川省自貢市富順三中學、代寺區(qū)中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022學年四川省自貢市富順三中學、代寺區(qū)中考三模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知的周長等于,則它的內(nèi)接正六邊形ABCDEF的面積是()A. B. C. D.2.若二次函數(shù)y=-x2+bx+c與x軸有兩個交點(m,0),(m-6,0),該函數(shù)圖像向下平移n個單位長度時與x軸有且只有一個交點,則n的值是()A.3 B.6 C.9 D.363.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.4.化簡-32A.﹣23B.﹣23C.﹣65.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°6.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形7.下列二次根式中,的同類二次根式是()A. B. C. D.8.如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為(12,1),下列結(jié)論:①ac<1;②a+b=1;③4ac﹣b2A.1B.2C.3D.49.今年,我省啟動了“關愛留守兒童工程”.某村小為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進行了統(tǒng)計,得到每個年級的留守兒童人數(shù)分別為10,15,10,17,18,1.對于這組數(shù)據(jù),下列說法錯誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是10.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知圓O的半徑為2,A是圓上一定點,B是OA的中點,E是圓上一動點,以BE為邊作正方形BEFG(B、E、F、G四點按逆時針順序排列),當點E繞⊙O圓周旋轉(zhuǎn)時,點F的運動軌跡是_________圖形12.如圖,將一個正三角形紙片剪成四個全等的小正三角形,再將其中的一個按同樣的方法剪成四個更小的正三角形,……如此繼續(xù)下去,結(jié)果如下表:則an=__________(用含n的代數(shù)式表示).所剪次數(shù)1234…n正三角形個數(shù)471013…an13.直線y=2x+1經(jīng)過點(0,a),則a=________.14.對于實數(shù),我們用符號表示兩數(shù)中較小的數(shù),如.因此,________;若,則________.15.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.16.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.18.(8分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.19.(8分)當=,b=2時,求代數(shù)式的值.20.(8分)(10分)如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結(jié)CE、AE、CD,若∠AEC=∠ODC.(1)求證:直線CD為⊙O的切線;(2)若AB=5,BC=4,求線段CD的長.21.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達式.22.(10分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.23.(12分)某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:202119162718312921222520192235331917182918352215181831311922整理上面數(shù)據(jù),得到條形統(tǒng)計圖:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:統(tǒng)計量平均數(shù)眾數(shù)中位數(shù)數(shù)值23m21根據(jù)以上信息,解答下列問題:上表中眾數(shù)m的值為;為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應根據(jù)來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).24.如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內(nèi)接多邊形的性質(zhì)可得∠AOB=60°,即可證明△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OH的長,根據(jù)S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應用.2、C【解析】

設交點式為y=-(x-m)(x-m+6),在把它配成頂點式得到y(tǒng)=-[x-(m-3)]2+1,則拋物線的頂點坐標為(m-3,1),然后利用拋物線的平移可確定n的值.【詳解】設拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點坐標為(m-3,1),∴該函數(shù)圖象向下平移1個單位長度時頂點落在x軸上,即拋物線與x軸有且只有一個交點,即n=1.故選C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).3、C【解析】試題解析:左視圖如圖所示:故選C.4、C【解析】試題解析:原式=-32故選C.考點:二次根式的乘除法.5、D【解析】

根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【點睛】本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.6、B【解析】

如果兩個多邊形的對應角相等,對應邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應角相等,對應邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應角不一定相等,矩形的邊不一定對應成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊成比例,對應角相等,兩個條件必須同時具備.7、C【解析】

先將每個選項的二次根式化簡后再判斷.【詳解】解:A:,與不是同類二次根式;B:被開方數(shù)是2x,故與不是同類二次根式;C:=,與是同類二次根式;D:=2,與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的概念.8、C【解析】①根據(jù)圖象知道:a<1,c>1,∴ac<1,故①正確;②∵頂點坐標為(1/2,1),∴x="-b/2a"="1/2",∴a+b=1,故②正確;③根據(jù)圖象知道:x=1時,y=a++b+c>1,故③錯誤;④∵頂點坐標為(1/2,1),∴4ac-b24a其中正確的是①②④.故選C9、C【解析】

解:中位數(shù)應該是15和17的平均數(shù)16,故C選項錯誤,其他選擇正確.故選C.【點睛】本題考查求中位數(shù),眾數(shù),方差,理解相關概念是本題的解題關鍵.10、D【解析】

解答此題要延長AB、DC相交于F,則BFC構(gòu)成直角三角形,再用勾股定理進行計算.【詳解】延長AB、DC相交于F,則BFC構(gòu)成直角三角形,運用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.【點睛】本題主要考查了勾股定理的應用,解答此題要延長AB、DC相交于F,構(gòu)造直角三角形,用勾股定理進行計算.二、填空題(本大題共6個小題,每小題3分,共18分)11、圓【解析】

根據(jù)題意作圖,即可得到點F的運動軌跡.【詳解】如圖,根據(jù)題意作下圖,可知F的運動軌跡為圓⊙O’.【點睛】此題主要考查動點的作圖問題,解題的關鍵是根據(jù)題意作出相應的圖形,方可判斷.12、3n+1.【解析】試題分析:從表格中的數(shù)據(jù),不難發(fā)現(xiàn):多剪一次,多3個三角形.即剪n次時,共有4+3(n-1)=3n+1.試題解析:故剪n次時,共有4+3(n-1)=3n+1.考點:規(guī)律型:圖形的變化類.13、1【解析】

根據(jù)一次函數(shù)圖象上的點的坐標特征,將點(0,a)代入直線方程,然后解關于a的方程即可.【詳解】∵直線y=2x+1經(jīng)過點(0,a),∴a=2×0+1,∴a=1.故答案為1.14、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,15、22.5【解析】

連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,

∵OE⊥AB,

∴∠EOB=90°,

∵點C為的中點,

∴∠BOC=45°,

∵OA=OC,

∴∠A=∠ACO=×45°=22.5°,

故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關鍵是注意掌握數(shù)形結(jié)合思想的應用.16、11≤x<1【解析】

根據(jù)對于實數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關鍵.三、解答題(共8題,共72分)17、見解析.【解析】

根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復雜作圖、角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題.18、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF19、,6﹣3.【解析】原式==,當a=,b=2時,原式.20、(1)證明見試題解析;(2).【解析】試題分析:(1)利用圓周角定理結(jié)合等腰三角形的性質(zhì)得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質(zhì)得出DC的長.試題解析:(1)連接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直線CD為⊙O的切線;(2)連接AC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.考點:切線的判定.21、(1)-6;(2).【解析】

(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標,作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關鍵是能借助全等三角形確定一些相關線段的長.22、(1)見解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點睛】本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論