




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市大學城第一中學2024屆高考數學考前最后一卷預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.自2019年12月以來,在湖北省武漢市發(fā)現多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內.某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負責該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種2.已知復數,其中為虛數單位,則()A. B. C.2 D.3.已知函數,若函數的所有零點依次記為,且,則()A. B. C. D.4.已知命題:,,則為()A., B.,C., D.,5.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.6.中,點在邊上,平分,若,,,,則()A. B. C. D.7.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.8.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.9.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.10.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln211.已知函數,則()A.函數在上單調遞增 B.函數在上單調遞減C.函數圖像關于對稱 D.函數圖像關于對稱12.設a,b,c為正數,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.14.,則f(f(2))的值為____________.15.已知,,,的夾角為30°,,則_________.16.已知函數,則曲線在處的切線斜率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.18.(12分)已知,函數.(Ⅰ)若在區(qū)間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數據:)19.(12分)已知直線是曲線的切線.(1)求函數的解析式,(2)若,證明:對于任意,有且僅有一個零點.20.(12分)在直角坐標系中,圓C的參數方程(為參數),以O為極點,x軸的非負半軸為極軸建立極坐標系.(1)求圓C的極坐標方程;(2)直線l的極坐標方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.21.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數的取值范圍.22.(10分)下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產品銷量(萬臺)的具體數據:月份56789101112研發(fā)費用(百萬元)2361021131518產品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據數據可知與之間存在線性相關關系,求出與的線性回歸方程(系數精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產品銷售平均數的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數大約多少元.參考數據:,,,,參考公式:相關系數,其回歸直線中的,若隨機變量服從正態(tài)分布,則,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎題.2、D【解析】
把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.3、C【解析】
令,求出在的對稱軸,由三角函數的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數周期,令,可得.則函數在上有8條對稱軸.根據正弦函數的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數的對稱性,考查了三角函數的周期性,考查了等差數列求和.本題的難點是將所求的式子拆分為的形式.4、C【解析】
根據全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.5、D【解析】
利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.6、B【解析】
由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【詳解】平分,根據三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.7、C【解析】
根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.8、B【解析】
由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.9、C【解析】
過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.10、B【解析】
將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數函數和二次函數的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數函數的最值,是基礎題,.11、C【解析】
依題意可得,即函數圖像關于對稱,再求出函數的導函數,即可判斷函數的單調性;【詳解】解:由,,所以函數圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數的對稱性的判定,利用導數判斷函數的單調性,屬于基礎題.12、B【解析】
根據不等式的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】解:,,為正數,當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合不等式的性質是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
△PMF的周長最小,即求最小,過做拋物線準線的垂線,垂足為,轉化為求最小,數形結合即可求解.【詳解】如圖,F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準線方程為y=﹣2.過作準線的垂線,垂足為,則有,當且僅當三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應用,考查數形結合與數學轉化思想方法,屬于中檔題.14、1【解析】
先求f(1),再根據f(1)值所在區(qū)間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點睛】本題考查分段函數求值,考查對應性以及基本求解能力.15、1【解析】
由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.16、【解析】
求導后代入可構造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問題,考查導數的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據同角三角函數式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(2)設根據余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點睛】本題考查了正弦和角公式化簡三角函數式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.18、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導,得,已知導函數單調遞增,又在區(qū)間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數的計算,利用導數研究函數的增減性和最值,屬于中檔題19、(1)(2)證明見解析【解析】
(1)對函數求導,并設切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當x充分小時,當x充分大時,可得至少有一個零點.再證明零點的唯一性,即對函數求導得,對分和兩種情況討論,即可得答案.【詳解】(1)根據題意,,設直線與曲線相切于點.根據題意,可得,解之得,所以.(2)由(1)可知,則當x充分小時,當x充分大時,∴至少有一個零點.∵,①若,則,在上單調遞增,∴有唯一零點.②若令,得有兩個極值點,∵,∴,∴.∴在上單調遞增,在上單調遞減,在上單調遞增.∴極大值為.,又,∴在(0,16)上單調遞增,∴,∴有唯一零點.綜上可知,對于任意,有且僅有一個零點.【點睛】本題考查導數的幾何意義的運用、利用導數證明函數的零點個數,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意零點存在定理的運用.20、(1);(2)2【解析】
(1)首先利用對圓C的參數方程(φ為參數)進行消參數運算,化為普通方程,再根據普通方程化極坐標方程的公式得到圓C的極坐標方程.(2)設,聯立直線與圓的極坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 3781.9-2025乙炔炭黑第9部分:電阻率的測定
- 個人信用記錄維護義務承諾書6篇
- 品牌推廣與營銷策略標準化方案
- 2025年甘肅酒泉市玉門市引進急需緊缺人才(第一批)模擬試卷及答案詳解(新)
- 企業(yè)文化建設方案模板塑造核心價值
- 2025杭州拱墅區(qū)東新街道辦事處編外工作人員招聘4人模擬試卷及參考答案詳解一套
- 2025年金華義烏市中心醫(yī)院招聘非編人員6人考前自測高頻考點模擬試題及答案詳解(歷年真題)
- 行業(yè)服務領域創(chuàng)新成果保護承諾函5篇
- 2025-2026學年江西省宜春市豐城市部分高中高一上學期開學考試英語試題(解析版)
- 2025吉林白山市渾江區(qū)事業(yè)單位招聘高層次人才和工作人員(含專項招聘高校畢業(yè)生)57人模擬試卷及答案詳解(各地真題)
- 2025廣東東莞市寮步鎮(zhèn)人民政府招聘專職安全員10人考前自測高頻考點模擬試題及答案詳解一套
- 湘潭鋼鐵集團有限公司2026屆校園操作類招聘備考考試題庫附答案解析
- 山東初級注冊安全工程師(安全生產法律法規(guī))題庫及答案(2025年)
- 2025天津宏達投資控股有限公司及所屬企業(yè)招聘工作人員筆試模擬試題及答案解析
- 新安全生產法課件
- 恐龍媽媽藏蛋課件
- 鐵道概論高職PPT完整全套教學課件
- 鄭州師范學院教師招聘考試真題2022
- 北京市中考新定義練習題
- 超聲引導下肝穿刺活檢課件
- 社區(qū)矯正人員心理健康講座課件
評論
0/150
提交評論