2024年人教版中學(xué)七7年級(jí)下冊數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第1頁
2024年人教版中學(xué)七7年級(jí)下冊數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第2頁
2024年人教版中學(xué)七7年級(jí)下冊數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第3頁
2024年人教版中學(xué)七7年級(jí)下冊數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第4頁
2024年人教版中學(xué)七7年級(jí)下冊數(shù)學(xué)期末解答題復(fù)習(xí)題附答案_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024年人教版中學(xué)七7年級(jí)下冊數(shù)學(xué)期末解答題復(fù)習(xí)題附答案一、解答題1.如圖,用兩個(gè)面積為的小正方形紙片剪拼成一個(gè)大的正方形.(1)大正方形的邊長是________;(2)請你探究是否能將此大正方形紙片沿著邊的方向裁出一個(gè)面積為的長方形紙片,使它的長寬之比為,若能,求出這個(gè)長方形紙片的長和寬,若不能,請說明理由.2.如圖所示的正方形紙板是由兩張大小相同的長方形紙板拼接而成的,已知一個(gè)長方形紙板的面積為162平方厘米,求正方形紙板的邊長.3.如圖,這是由8個(gè)同樣大小的立方體組成的魔方,體積為64.(1)求出這個(gè)魔方的棱長;(2)圖中陰影部分是一個(gè)正方形ABCD,求出陰影部分的邊長.4.如圖,用兩個(gè)邊長為10的小正方形拼成一個(gè)大的正方形.(1)求大正方形的邊長?(2)若沿此大正方形邊的方向出一個(gè)長方形,能否使裁出的長方形的長寬之比為3:2,且面積為480cm2?5.如圖,紙上有五個(gè)邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個(gè)正方形.(1)拼成的正方形的面積與邊長分別是多少?(2)如圖所示,以數(shù)軸的單位長度的線段為邊作一個(gè)直角三角形,以數(shù)軸的-1點(diǎn)為圓心,直角三角形的最大邊為半徑畫弧,交數(shù)軸正半軸于點(diǎn)A,那么點(diǎn)A表示的數(shù)是多少?點(diǎn)A表示的數(shù)的相反數(shù)是多少?(3)你能把十個(gè)小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,請畫出示意圖,并求它的邊長二、解答題6.如圖,直線HDGE,點(diǎn)A在直線HD上,點(diǎn)C在直線GE上,點(diǎn)B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點(diǎn)P是線段AB上一點(diǎn),PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.7.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.8.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過P作PE∥AB,通過平行線性質(zhì),可得∠APC=∠APE+∠CPE=50°+60°=110°.問題解決:(1)如圖2,AB∥CD,直線l分別與AB、CD交于點(diǎn)M、N,點(diǎn)P在直線I上運(yùn)動(dòng),當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí)(不與點(diǎn)M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關(guān)系并說明理由;(2)在(1)的條件下,如果點(diǎn)P在線段MN或NM的延長線上運(yùn)動(dòng)時(shí).請直接寫出∠APC、α、B之間的數(shù)量關(guān)系;(3)如圖3,AB∥CD,點(diǎn)P是AB、CD之間的一點(diǎn)(點(diǎn)P在點(diǎn)A、C右側(cè)),連接PA、PC,∠BAP和∠DCP的平分線交于點(diǎn)Q.若∠APC=116°,請結(jié)合(2)中的規(guī)律,求∠AQC的度數(shù).9.已知,點(diǎn)在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點(diǎn),請利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點(diǎn),請直接寫出與之間的數(shù)量關(guān)系.10.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.三、解答題11.已知,將一副三角板中的兩塊直角三角板如圖1放置,,,,.(1)若三角板如圖1擺放時(shí),則______,______.(2)現(xiàn)固定的位置不變,將沿方向平移至點(diǎn)E正好落在上,如圖2所示,與交于點(diǎn)G,作和的角平分線交于點(diǎn)H,求的度數(shù);(3)現(xiàn)固定,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請直接寫出的度數(shù).12.如圖1所示:點(diǎn)E為BC上一點(diǎn),∠A=∠D,AB∥CD(1)直接寫出∠ACB與∠BED的數(shù)量關(guān)系;(2)如圖2,AB∥CD,BG平分∠ABE,BG的反向延長線與∠EDF的平分線交于H點(diǎn),若∠DEB比∠GHD大60°,求∠DEB的度數(shù);(3)保持(2)中所求的∠DEB的度數(shù)不變,如圖3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不發(fā)生變化,請求它的度數(shù),若發(fā)生改變,請說明理由.(本題中的角均為大于0°且小于180°的角).13.閱讀下面材料:小穎遇到這樣一個(gè)問題:已知:如圖甲,為之間一點(diǎn),連接,求的度數(shù).她是這樣做的:過點(diǎn)作則有因?yàn)樗寓偎运约確;1.小穎求得的度數(shù)為__;2.上述思路中的①的理由是__;3.請你參考她的思考問題的方法,解決問題:已知:直線點(diǎn)在直線上,點(diǎn)在直線上,連接平分平分且所在的直線交于點(diǎn).(1)如圖1,當(dāng)點(diǎn)在點(diǎn)的左側(cè)時(shí),若,則的度數(shù)為;(用含有的式子表示).(2)如圖2,當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí),設(shè),直接寫出的度數(shù)(用含有的式子表示).14.綜合與探究(問題情境)王老師組織同學(xué)們開展了探究三角之間數(shù)量關(guān)系的數(shù)學(xué)活動(dòng).(1)如圖1,EF∥MN,點(diǎn)A、B分別為直線EF、MN上的一點(diǎn),點(diǎn)P為平行線間一點(diǎn),請直接寫出∠PAF、∠PBN和∠APB之間的數(shù)量關(guān)系;(問題遷移)(2)如圖2,射線OM與射線ON交于點(diǎn)O,直線m∥n,直線m分別交OM、ON于點(diǎn)A、D,直線n分別交OM、ON于點(diǎn)B、C,點(diǎn)P在射線OM上運(yùn)動(dòng).①當(dāng)點(diǎn)P在A、B(不與A、B重合)兩點(diǎn)之間運(yùn)動(dòng)時(shí),設(shè)∠ADP=∠α,∠BCP=∠β.則∠CPD,∠α,∠β之間有何數(shù)量關(guān)系?請說明理由;②若點(diǎn)P不在線段AB上運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)都不重合),請你畫出滿足條件的所有圖形并直接寫出∠CPD,∠α,∠β之間的數(shù)量關(guān)系.15.問題情境(1)如圖1,已知,,,求的度數(shù).佩佩同學(xué)的思路:過點(diǎn)作,進(jìn)而,由平行線的性質(zhì)來求,求得________.問題遷移(2)圖2.圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合,,,與相交于點(diǎn),有一動(dòng)點(diǎn)在邊上運(yùn)動(dòng),連接,,記,.①如圖2,當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),請直接寫出與,之間的數(shù)量關(guān)系;②如圖3,當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),與,之間有何數(shù)量關(guān)系?請判斷并說明理由;拓展延伸(3)當(dāng)點(diǎn)在,兩點(diǎn)之間運(yùn)動(dòng)時(shí),若,的角平分線,相交于點(diǎn),請直接寫出與,之間的數(shù)量關(guān)系.四、解答題16.(生活常識(shí))射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現(xiàn)象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經(jīng)過兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD相交于點(diǎn)E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經(jīng)過兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點(diǎn)E,∠BED=β,α與β之間滿足的等量關(guān)系是.(直接寫出結(jié)果)17.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.18.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說明理由;【問題遷移】如圖2,DF∥CE,點(diǎn)P在三角板AB邊上滑動(dòng),∠PCE=∠α,∠PDF=∠β.(1)當(dāng)點(diǎn)P在E、F兩點(diǎn)之間運(yùn)動(dòng)時(shí),如果α=30°,β=40°,則∠DPC=°.(2)如果點(diǎn)P在E、F兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、E、F四點(diǎn)不重合),寫出∠DPC與α、β之間的數(shù)量關(guān)系,并說明理由.(圖1)(圖2)19.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.20.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請直接寫出旋轉(zhuǎn)的時(shí)間.【參考答案】一、解答題1.(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再解析:(1)4;(2)不能,理由見解析.【分析】(1)根據(jù)已知正方形的面積求出大正方形的邊長即可;(2)先設(shè)未知數(shù)根據(jù)面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再判斷即可.【詳解】解:(1)兩個(gè)正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長是4cm;故答案為:4;(2)設(shè)長方形紙片的長為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長寬之比為且面積為的長方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,能夠根據(jù)題意列出算式是解此題的關(guān)鍵.2.正方形紙板的邊長是18厘米【分析】根據(jù)正方形的面積公式進(jìn)行解答.【詳解】解:設(shè)小長方形的寬為x厘米,則小長方形的長為厘米,即得正方形紙板的邊長是厘米,根據(jù)題意得:,∴,取正值,可得,解析:正方形紙板的邊長是18厘米【分析】根據(jù)正方形的面積公式進(jìn)行解答.【詳解】解:設(shè)小長方形的寬為x厘米,則小長方形的長為厘米,即得正方形紙板的邊長是厘米,根據(jù)題意得:,∴,取正值,可得,∴答:正方形紙板的邊長是18厘米.【點(diǎn)評(píng)】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,解題的關(guān)鍵是熟悉正方形的面積公式.3.(1)棱長為4;(2)邊長為:(或)【分析】(1)由立方體的體積為棱長的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長為,則,所以,即正方體的棱長為4.解析:(1)棱長為4;(2)邊長為:(或)【分析】(1)由立方體的體積為棱長的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長為,則,所以,即正方體的棱長為4.(2)因?yàn)檎襟w的棱長為4,所以AB=.【點(diǎn)睛】本題考查的是立方根與算術(shù)平方根的理解與計(jì)算,由實(shí)際的情境去理解問題本身就是求一個(gè)數(shù)的立方根與算術(shù)平方根是關(guān)鍵.4.(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設(shè)長方形紙解析:(1)大正方形的邊長是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】(1)大正方形的邊長是(2)設(shè)長方形紙片的長為3xcm,寬為2xcm,則3x?2x=480,解得:x=因?yàn)椋匝卮舜笳叫芜叺姆较蚣舫鲆粋€(gè)長方形,不能使剪出的長方形紙片的長寬之比為2:3,且面積為480cm2.【點(diǎn)睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.5.(1)5;;(2);;(3)能,.【分析】(1)易得5個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個(gè)小正解析:(1)5;;(2);;(3)能,.【分析】(1)易得5個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個(gè)小正方形,那么組成的大正方形的面積為10,邊長為10的算術(shù)平方根,畫圖.【詳解】試題分析:解:(1)拼成的正方形的面積與原面積相等1×1×5=5,邊長為,如圖(1)(2)斜邊長=,故點(diǎn)A表示的數(shù)為:;點(diǎn)A表示的相反數(shù)為:(3)能,如圖拼成的正方形的面積與原面積相等1×1×10=10,邊長為.考點(diǎn):1.作圖—應(yīng)用與設(shè)計(jì)作圖;2.圖形的剪拼.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點(diǎn)B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點(diǎn)B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).7.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出解析:(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯(cuò)角相等,兩直線平行).∴AB//CD.(2)過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.8.(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過點(diǎn)P作PE∥AB,根據(jù)平行線的判定與性質(zhì)即可求解;(2)分點(diǎn)P在線段MN或NM的延長線解析:(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過點(diǎn)P作PE∥AB,根據(jù)平行線的判定與性質(zhì)即可求解;(2)分點(diǎn)P在線段MN或NM的延長線上運(yùn)動(dòng)兩種情況,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解;(3)過點(diǎn)P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解.【詳解】解:(1)如圖2,過點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點(diǎn)P在線段MN的延長線上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點(diǎn)P在線段NM的延長線上運(yùn)動(dòng)時(shí),∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過點(diǎn)P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),添加輔助線將兩條平行線相關(guān)的角聯(lián)系到一起是解題的關(guān)鍵.9.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,解析:(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點(diǎn)E作EG∥AB,則∠BEG=∠ABE,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因?yàn)锽F平分∠ABE,所以∠ABE=2∠ABF,因?yàn)镈F平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因?yàn)锳B∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).10.(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.三、解答題11.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據(jù)平行線的性質(zhì)和三角板的角的度數(shù)解答即可;(2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可;(3)分當(dāng)BC∥DE時(shí),當(dāng)BC∥EF時(shí),當(dāng)BC∥DF時(shí),三種情況進(jìn)行解答即可.【詳解】解:(1)作EI∥PQ,如圖,∵PQ∥MN,則PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α=DEA-∠BAC=60°-45°=15°,∵E、C、A三點(diǎn)共線,∴∠β=180°-∠DFE=180°-30°=150°;故答案為:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,F(xiàn)H分別平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)當(dāng)BC∥DE時(shí),如圖1,∵∠D=∠C=90,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;當(dāng)BC∥EF時(shí),如圖2,此時(shí)∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;當(dāng)BC∥DF時(shí),如圖3,此時(shí),AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.綜上所述,∠BAM的度數(shù)為30°或90°或120°.【點(diǎn)睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點(diǎn).12.(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB,根據(jù)AB∥CD,AB∥E解析:(1);(2);(3)不發(fā)生變化,理由見解析【分析】(1)如圖1,延長DE交AB于點(diǎn)F,根據(jù)平行線的性質(zhì)推出;(2)如圖2,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB,根據(jù)AB∥CD,AB∥ES推出,再根據(jù)AB∥TH,AB∥CD推出,最后根據(jù)比大得出的度數(shù);(3)如圖3,過點(diǎn)E作EQ∥DN,根據(jù)得出的度數(shù),根據(jù)條件再逐步求出的度數(shù).【詳解】(1)如答圖1所示,延長DE交AB于點(diǎn)F.AB∥CD,所以,又因?yàn)椋?,所以AC∥DF,所以.因?yàn)?,所以?2)如答圖2所示,過點(diǎn)E作ES∥AB,過點(diǎn)H作HT∥AB.設(shè),,因?yàn)锳B∥CD,AB∥ES,所以,,所以,因?yàn)锳B∥TH,AB∥CD,所以,,所以,因?yàn)楸却?,所以,所以,所以,所?3)不發(fā)生變化如答圖3所示,過點(diǎn)E作EQ∥DN.設(shè),,由(2)易知,所以,所以,所以,所以.【點(diǎn)睛】本題考查了平行線的性質(zhì),求角的度數(shù),正確作出相關(guān)的輔助線,根據(jù)條件逐步求出角度的度數(shù)是解題的關(guān)鍵.13.;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計(jì)算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)B解析:;2.平行于同一條直線的兩條直線平行;3.(1);(2).【分析】1、根據(jù)角度和計(jì)算得到答案;2、根據(jù)平行線的推論解答;3、(1)根據(jù)角平分線的性質(zhì)及1的結(jié)論證明即可得到答案;(2)根據(jù)BE平分平分求出,過點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)求出∠BEF=,,再利用周角求出答案.【詳解】1、過點(diǎn)作則有因?yàn)樗寓偎运约矗还蚀鸢笧椋海?、過點(diǎn)作則有因?yàn)樗訣F∥CD(平行于同一條直線的兩條直線平行),故答案為:平行于同一條直線的兩條直線平行;3、(1)∵BE平分平分∴,過點(diǎn)E作EF∥AB,由1可得∠BED=,∴∠BED=,故答案為:;(2)∵BE平分平分∴,過點(diǎn)E作EF∥AB,則∠ABE=∠BEF=,∵∴EF∥CD,∴,∴,∴.【點(diǎn)睛】此題考查平行線的性質(zhì):兩直線平行內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),平行線的推論,正確引出輔助線是解題的關(guān)鍵.14.(1)∠PAF+∠PBN+∠APB=360°;(2)①,見解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據(jù)平行線的性質(zhì)得∠PAF+∠APC=180°,∠解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,見解析;②或【分析】(1)作PC∥EF,如圖1,由PC∥EF,EF∥MN得到PC∥MN,根據(jù)平行線的性質(zhì)得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;(2)①過P作PE∥AD交ON于E,根據(jù)平行線的性質(zhì),可得到,,于是;②分兩種情況:當(dāng)P在OB之間時(shí);當(dāng)P在OA的延長線上時(shí),仿照①的方法即可解答.【詳解】解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:作PC∥EF,如圖1,∵PC∥EF,EF∥MN,∴PC∥MN,∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,∴∠PAF+∠APC+∠PBN+∠CPB=360°,∴∠PAF+∠PBN+∠APB=360°;(2)①,理由如下:如答圖,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴②當(dāng)P在OB之間時(shí),,理由如下:如備用圖1,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;當(dāng)P在OA的延長線上時(shí),,理由如下:如備用圖2,過P作PE∥AD交ON于E,∵AD∥BC,∴PE∥BC,∴,,∴;綜上所述,∠CPD,∠α,∠β之間的數(shù)量關(guān)系是或.【點(diǎn)睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ).難點(diǎn)是分類討論作平行輔助線.15.(1);(2)①,②,理由見解析;(3)【分析】(1)過點(diǎn)作,則,由平行線的性質(zhì)可得的度數(shù);(2)①過點(diǎn)作的平行線,依據(jù)平行線的性質(zhì)可得與,之間的數(shù)量關(guān)系;②過作,依據(jù)平行線的性質(zhì)可得,,即解析:(1);(2)①,②,理由見解析;(3)【分析】(1)過點(diǎn)作,則,由平行線的性質(zhì)可得的度數(shù);(2)①過點(diǎn)作的平行線,依據(jù)平行線的性質(zhì)可得與,之間的數(shù)量關(guān)系;②過作,依據(jù)平行線的性質(zhì)可得,,即可得到;(3)過和分別作的平行線,依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到與,之間的數(shù)量關(guān)系為.【詳解】解:(1)如圖1,過點(diǎn)作,則,由平行線的性質(zhì)可得,,又∵,,∴,故答案為:;(2)①如圖2,與,之間的數(shù)量關(guān)系為;過點(diǎn)P作PM∥FD,則PM∥FD∥CG,∵PM∥FD,∴∠1=∠α,∵PM∥CG,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:,②如圖,與,之間的數(shù)量關(guān)系為;理由:過作,∵,∴,∴,,∴;(3)如圖,由①可知,∠N=∠3+∠4,∵EN平分∠DEP,AN平分∠PAC,∴∠3=∠α,∠4=∠β,∴,∴與,之間的數(shù)量關(guān)系為.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是過拐點(diǎn)作平行線,利用平行線的性質(zhì)得出結(jié)論.四、解答題16.【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現(xiàn)象解釋】見解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據(jù)三角形內(nèi)角和定理求得∠2+∠3=125°,根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據(jù)三角形內(nèi)角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質(zhì)∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現(xiàn)象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點(diǎn)睛】本題考查了平行線的判定,三角形外角的性質(zhì)以及三角形內(nèi)角和定理,熟練掌握三角形的性質(zhì)是解題的關(guān)鍵.17.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.【詳解】試題分析:(1)根據(jù)四邊形內(nèi)角和定理以及鄰補(bǔ)角的定義,得出∠1+∠2=∠C+∠α,進(jìn)而得出即可;(2)利用(1)中所求的結(jié)論得出∠α、∠1、∠2之間的關(guān)系即可;(3)利用三角外角的性質(zhì),得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出∠α、∠1、∠2之間的關(guān)系.試題分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案為140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案為∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如圖③,設(shè)DP與BE的交點(diǎn)為M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如圖④,設(shè)PE與AC的交點(diǎn)為F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案為∠2=90°+∠1-∠α點(diǎn)睛:本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),熟練掌握三角形外角的性質(zhì)是解決問題的關(guān)鍵.18.∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【問題探究】解:∠DPC=α+β如圖,過P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【問題遷移】(1)70(圖1)(圖2)(2)如圖1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如圖2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β19.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論