




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷一、選擇題1.若兩個(gè)最簡(jiǎn)二次根式和是同類(lèi)二次根式,則的值為()A.4或-1 B.4 C.1 D.-12.三條線(xiàn)段首尾相連,不能?chē)芍苯侨切蔚氖牵ǎ〢.,, B.,, C.,, D.,,3.如圖,在平行四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O.E、F是對(duì)角線(xiàn)AC上的兩個(gè)不同點(diǎn),當(dāng)E、F兩點(diǎn)滿(mǎn)足下列條件時(shí),四邊形DEBF不一定是平行四邊形().A.AE=CF B.DE=BFC.∠ADE=∠CBF D.∠AED=∠CFB4.甲、乙、丙、丁四人進(jìn)行射擊測(cè)試,記錄每人10次射擊成績(jī),得到各人的射擊成績(jī)平均數(shù)和方差如表中所示,則成績(jī)最穩(wěn)定的是()統(tǒng)計(jì)量甲乙丙丁平均數(shù)方差A(yù).甲 B.乙 C.丙 D.丁5.如圖,在△ABC中,AC=6,AB=8,BC=10,點(diǎn)D是BC的中點(diǎn),連接AD,分別以點(diǎn)A,B為圓心,CD的長(zhǎng)為半徑在△ABC外畫(huà)弧,兩弧交于點(diǎn)E,連接AE,BE.則四邊形AEBC的面積為()A.30 B.30 C.24 D.36人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共1頁(yè),當(dāng)前為第1頁(yè)。6.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點(diǎn)O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為()人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共1頁(yè),當(dāng)前為第1頁(yè)。A.54° B.64° C.74° D.26°7.如圖,已知矩形ABCD沿著直線(xiàn)BD折疊,使點(diǎn)C落在C'處,BC'交AD于E,AD=8,AB=4,則DE的長(zhǎng)為()A.3 B.4 C.5 D.68.如圖,直線(xiàn)與相交于點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn).下列說(shuō)法錯(cuò)誤的是().A. B.C. D.直線(xiàn)的函數(shù)表達(dá)式為二、填空題9.若函數(shù)在實(shí)數(shù)范圍內(nèi)有意義,則自變量的取值范圍是______.10.若菱形的周長(zhǎng)為20cm,一個(gè)內(nèi)角為,則菱形的面積為_(kāi)__________.11.直角三角形的兩條直角邊長(zhǎng)分別為、,則這個(gè)直角三角形的斜邊長(zhǎng)為_(kāi)_______cm.12.如圖,在矩形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O.若AB=5,AD=12,則OC=______.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共2頁(yè),當(dāng)前為第2頁(yè)。人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共2頁(yè),當(dāng)前為第2頁(yè)。13.已知直線(xiàn)經(jīng)過(guò)點(diǎn),那么_________.14.在矩形中,,的平分線(xiàn)交所在的直線(xiàn)于點(diǎn),若,則的長(zhǎng)為_(kāi)_________.15.如圖所示,直線(xiàn)與兩坐標(biāo)軸分別交于、兩點(diǎn),點(diǎn)是的中點(diǎn),、分別是直線(xiàn)、軸上的動(dòng)點(diǎn),當(dāng)周長(zhǎng)最小時(shí),點(diǎn)的坐標(biāo)為_(kāi)____.16.如圖,在矩形中,為邊上一點(diǎn),將沿翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)為直角三角形時(shí),_________.三、解答題17.計(jì)算:(1);(2).人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共3頁(yè),當(dāng)前為第3頁(yè)。18.如圖,將長(zhǎng)為2.5米的梯子AB斜靠在墻AO上,BO長(zhǎng)0.7米.如果將梯子的頂端A沿墻下滑0.4米,即AM等于0.4米,則梯腳B外移(即BN長(zhǎng))多少米?人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共3頁(yè),當(dāng)前為第3頁(yè)。19.在△ABC中,AB,BC,AC三邊的長(zhǎng)分別為,求這個(gè)三角形的面積,小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處,如圖1所示,這樣不需要求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.)(1)請(qǐng)將△ABC的面積直接填寫(xiě)在橫線(xiàn)上.(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC三邊的長(zhǎng)分別為,2(a>0),請(qǐng)?jiān)趫D②中給出的正方形網(wǎng)格內(nèi)(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的△ABC(其中一條邊已經(jīng)畫(huà)好),并求出它的面積.20.如圖,在矩形ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BC的延長(zhǎng)線(xiàn)上,且BE=CF.求證:(1)△ABE≌DCF;(2)四邊形AEFD是平行四邊形;探究:連結(jié)DE,若DE平分∠AEC,直接寫(xiě)出此時(shí)四邊形AEFD的形狀.21.閱讀材料:規(guī)定初中考試不能使用計(jì)算器后,小明是這樣解決問(wèn)題的:已知a=,求的值.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共4頁(yè),當(dāng)前為第4頁(yè)。他是這樣分析與解的:∵a==,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共4頁(yè),當(dāng)前為第4頁(yè)。∴,∴∴,∴=2(=.請(qǐng)你根據(jù)小明的分析過(guò)程,解決如下問(wèn)題:(1)若a=,直接寫(xiě)出的值是.(2)使用以上方法化簡(jiǎn):22.一輛汽車(chē)油箱內(nèi)有油a升,從某地出發(fā),每行駛1小時(shí)耗油6升,若設(shè)剩余油量為Q升,行駛時(shí)間為t小時(shí),根據(jù)以上信息回答下列問(wèn)題:(1)開(kāi)始時(shí),汽車(chē)的油量a=升;(2)在行駛了小時(shí)汽車(chē)加油,加了升;(3)根據(jù)圖象求加油前Q與t之間的關(guān)系式,并寫(xiě)出t的取值范圍.23.在平行四邊形中,以為腰向右作等腰,,以為斜邊向左作,且三點(diǎn),,在同一直線(xiàn)上.(1)如圖①,若點(diǎn)與點(diǎn)重合,且,,求四邊形的周長(zhǎng);(2)如圖②,若點(diǎn)在邊上,點(diǎn)為線(xiàn)段上一點(diǎn),連接,點(diǎn)為上一點(diǎn),連接,且,,求證:;(3)如圖③,若,,,是中點(diǎn),是上一點(diǎn),在五邊形內(nèi)作等邊,連接、,直接寫(xiě)出的最小值.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共5頁(yè),當(dāng)前為第5頁(yè)。24.如圖1,矩形在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B的坐標(biāo)為,點(diǎn)P,Q同時(shí)以相同的速度分別從點(diǎn)O,B出發(fā),在邊,上運(yùn)動(dòng),連接,當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),運(yùn)動(dòng)停止.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共5頁(yè),當(dāng)前為第5頁(yè)。(1)求證:在運(yùn)動(dòng)過(guò)程中,四邊形是平行四邊形.(2)如圖2,在運(yùn)動(dòng)過(guò)程中,是否存在四邊形是菱形的情況?若存在,求出此時(shí)直線(xiàn)的解析式;若不存在,請(qǐng)說(shuō)明理由.(3)如圖3,在(2)的情況下,直線(xiàn)上是否存在一點(diǎn)D,使得是直角三角形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.25.如圖①,已知正方形ABCD的邊長(zhǎng)為3,點(diǎn)Q是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)A關(guān)于直線(xiàn)BQ的對(duì)稱(chēng)點(diǎn)是點(diǎn)P,連接QP、DP、CP、BP,設(shè)AQ=x.(1)BP+DP的最小值是_______,此時(shí)x的值是_______;(2)如圖②,若QP的延長(zhǎng)線(xiàn)交CD邊于點(diǎn)M,并且∠CPD=90°.①求證:點(diǎn)M是CD的中點(diǎn);②求x的值.(3)若點(diǎn)Q是射線(xiàn)AD上的一個(gè)動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出當(dāng)△CDP為等腰三角形時(shí)x的值.26.如圖正方形,點(diǎn)、、分別在、、上,與相交于點(diǎn).(1)如圖1,當(dāng),①求證:;②平移圖1中線(xiàn)段,使點(diǎn)與重合,點(diǎn)在延長(zhǎng)線(xiàn)上,連接,取中點(diǎn),連接,如圖2,求證:;人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共6頁(yè),當(dāng)前為第6頁(yè)。(2)如圖3,當(dāng),邊長(zhǎng),,則的長(zhǎng)為_(kāi)________(直接寫(xiě)出結(jié)果).人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共6頁(yè),當(dāng)前為第6頁(yè)?!緟⒖即鸢浮恳?、選擇題1.A解析:A【分析】根據(jù)同類(lèi)二次根式的概念可得關(guān)于n的方程,解方程可求得n的值,再根據(jù)二次根式有意義的條件進(jìn)行驗(yàn)證即可得.【詳解】解:由題意:n2-2n=n+4,即n2-3n-4=0,所以(n-4)(n+1)=0解得:n1=4,n2=-1,當(dāng)n=4時(shí),n2-2n=8,n+4=8,符合題意,當(dāng)n=-1時(shí),n2-2n=3,n+4=3,符合題意,故選:A.【點(diǎn)睛】本題考查了同類(lèi)二次根式,二次根式有意義的條件,解一元二次方程等知識(shí),熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.2.D解析:D【分析】根據(jù)勾股定理逆定理,驗(yàn)證兩條較短邊的平方和是否等于最長(zhǎng)邊的平方即可求解.【詳解】解:A、因?yàn)?,所以,,能?chē)芍苯侨切?,故本選項(xiàng)不符合題意;B、因?yàn)椋?,,能?chē)芍苯侨切?,故本選項(xiàng)不符合題意;C、因?yàn)?,所以,,能?chē)芍苯侨切?,故本選項(xiàng)不符合題意;人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共7頁(yè),當(dāng)前為第7頁(yè)。D、因?yàn)椋?,,不能?chē)芍苯侨切危时具x項(xiàng)符合題意;人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共7頁(yè),當(dāng)前為第7頁(yè)。故選:D.【點(diǎn)睛】本題主要考查了勾股定理逆定理,熟練掌握若一個(gè)三角形的兩邊的平方和等于第三邊的平方,則這個(gè)三角形是直角三角形是解題的關(guān)鍵.3.B解析:B【解析】【分析】根據(jù)平行四邊形的性質(zhì)以及平行四邊形的判定定理即可得出判斷.【詳解】解:A、∵在平行四邊形ABCD中,OA=OC,OB=OD,若AE=CF,則OE=OF,∴四邊形DEBF是平行四邊形;B、若DE=BF,沒(méi)有條件能夠說(shuō)明四邊形DEBF是平行四邊形,則選項(xiàng)錯(cuò)誤;C、∵在平行四邊形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,則∠EDB=∠FBO,∴DE∥BF,則△DOE和△BOF中,∴△DOE≌△BOF,∴DE=BF,∴四邊形DEBF是平行四邊形.故選項(xiàng)正確;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,,∴△DOE≌△BOF,∴DE=BF,∴四邊形DEBF是平行四邊形.故選項(xiàng)正確.故選B.【點(diǎn)睛】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共8頁(yè),當(dāng)前為第8頁(yè)。本題考查了平行四邊形的性質(zhì)以及判定定理,涉及到全等三角形的判定和性質(zhì),熟練掌握平行四邊形的判定定理是解題的關(guān)鍵.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共8頁(yè),當(dāng)前為第8頁(yè)。4.D解析:D【解析】【分析】根據(jù)方差的性質(zhì):方差越小,表示數(shù)據(jù)波動(dòng)越小,也就是越穩(wěn)定,據(jù)此進(jìn)行判斷即可.【詳解】解:∵甲、乙、丙、丁的方差分別為0.60,0.62,0.50,0.44,又∵0.44<0.50<0.60<0.62,∴丁的方差最小即丁的成績(jī)最穩(wěn)定,故選D.【點(diǎn)睛】此題主要考查方差的應(yīng)用,解題的關(guān)鍵是熟知方差的性質(zhì).5.D解析:D【分析】根據(jù)勾股定理的逆定理求出,求出,根據(jù)菱形的判定求出四邊形是菱形,根據(jù)菱形的性質(zhì)求出,求出,再求出四邊形的面積即可.【詳解】解:,,,,是直角三角形,即,點(diǎn)是的中點(diǎn),,,即,四邊形是菱形,,,四邊形的面積是,故選:D.【點(diǎn)睛】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共9頁(yè),當(dāng)前為第9頁(yè)。本題考查了勾股定理的逆定理,直角三角形斜邊上的中線(xiàn)的性質(zhì),菱形的性質(zhì)和判定,三角形的面積等知識(shí)點(diǎn),解題的關(guān)鍵是能求出是解此題的關(guān)鍵,注意:①如果一個(gè)三角形的兩邊、的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形,②等底等高的三角形的面積相等.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共9頁(yè),當(dāng)前為第9頁(yè)。6.B解析:B【解析】【分析】根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).【詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對(duì)邊平行以及對(duì)角線(xiàn)相互垂直的性質(zhì).7.C解析:C【解析】【分析】根據(jù)折疊前后角相等可知△ABE≌△C'ED,利用勾股定理可求出.【詳解】解:∵四邊形ABCD是矩形,∴AB=CD,∠C=∠A=90°由折疊的性質(zhì)可得:C'D=CD=AB;∠C'=∠C=∠A在△ABE與△C'ED中人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共10頁(yè),當(dāng)前為第10頁(yè)。人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共10頁(yè),當(dāng)前為第10頁(yè)?!唷鰽BE≌△C'ED(AAS)∴DE=BE設(shè)DE=BE=x,則AE=8-x,AB=4,在直角三角形ABE中,解得x=5故選C.【點(diǎn)睛】本題考查勾股定理在折疊問(wèn)題中的應(yīng)用,找到合適的直角三角形構(gòu)建等量關(guān)系是本題關(guān)鍵.8.D解析:D【分析】由待定系數(shù)法分別求出直線(xiàn)m,n的解析式,即可判斷D,由解析式可求A點(diǎn)坐標(biāo),進(jìn)而由坐標(biāo)系中兩點(diǎn)距離公式可得AC=BC=2,即可判斷C正確,再由SAS可得,可判斷B正確,進(jìn)而可得.【詳解】解:如圖,設(shè)直線(xiàn)m的解析式為把,代入得,,解得:,∴直線(xiàn)的函數(shù)表達(dá)式為;,所以D錯(cuò)誤;設(shè)直線(xiàn)的解析式為,把,代入得,解得,所以的解析式為,當(dāng)時(shí),,則,又∵,,∴,,則,AB=4所以C正確;,,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共11頁(yè),當(dāng)前為第11頁(yè)。BD=4,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共11頁(yè),當(dāng)前為第11頁(yè)?!郃B=BD在和中,≌(SAS),故B正確,,;故A正確;綜上所述:ABC正確,D錯(cuò)誤,故選:D.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)解析式和全等三角形的判定和性質(zhì).線(xiàn)段長(zhǎng)解題關(guān)鍵是求出一次函數(shù)解析式進(jìn)而由點(diǎn)的坐標(biāo)求出線(xiàn)段長(zhǎng).二、填空題9.【解析】【分析】根據(jù)二次根式有意義的條件:被開(kāi)方數(shù)大于或等于0列不等式即可求解.【詳解】解:因?yàn)樵趯?shí)數(shù)范圍內(nèi)有意義,所以,解得:.故答案為:.【點(diǎn)睛】本題主要考查二次根式有意義的條件,解決本題的關(guān)鍵是要熟練掌握二次根式有意義的條件.10.A解析:【解析】【分析】由菱形的性質(zhì)和已知條件得出AB=BC=CD=DA=5cm,AC⊥BD,由含30°角的直角三角形的性質(zhì)得出BO=AB=cm,由勾股定理求出OA,可得BD,AC的長(zhǎng)度,由菱形的面積公式可求解.【詳解】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共12頁(yè),當(dāng)前為第12頁(yè)。解:如圖所示:人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共12頁(yè),當(dāng)前為第12頁(yè)?!咚倪呅蜛BCD是菱形,∴AB=BC=CD=DA,∠BAO=∠BAD=30°,AC⊥BD,OA=AC,BO=DO∵菱形的周長(zhǎng)為20cm,∴AB=BC=CD=DA=5cm,∴BO=AB=cm,∴OA==(cm),∴AC=2OA=cm,BD=2BO=5cm∴菱形ABCD的面積=AC×BD=.故答案是:.【點(diǎn)睛】本題考查了菱形的性質(zhì)、含30°角的直角三角形的性質(zhì)、勾股定理;熟練掌握菱形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.11.【解析】【分析】利用勾股定理直接計(jì)算可得答案.【詳解】解:由勾股定理得:斜邊故答案為:.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.12.B解析:5【分析】根據(jù)勾股定理得出BD,進(jìn)而利用矩形的性質(zhì)得出OC即可.【詳解】解:∵四邊形ABCD是矩形,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共13頁(yè),當(dāng)前為第13頁(yè)?!唷螧AD=90°,AC=BD,OC=OA,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共13頁(yè),當(dāng)前為第13頁(yè)。在Rt△ABD中,BD=,∴OC=AC==.故答案為:6.5.【點(diǎn)睛】此題考查矩形的性質(zhì)和勾股定理,解答此題的關(guān)鍵是由矩形的性質(zhì)和根據(jù)勾股定理得出BD解答.13.-4【分析】將點(diǎn)代入直線(xiàn)的表達(dá)式中求解即可.【詳解】解:∵直線(xiàn)經(jīng)過(guò)點(diǎn),∴0=4+b,解得:b=﹣4,故答案為:﹣4.【點(diǎn)睛】本題考查待定系數(shù)法求一次函數(shù)的解析式,熟練掌握待定系數(shù)法求函數(shù)解析式的方法是解答的關(guān)鍵.14.5或1【分析】當(dāng)點(diǎn)在上時(shí),根據(jù)平行線(xiàn)的性質(zhì)和角平分線(xiàn)的定義可得,可得的長(zhǎng);當(dāng)點(diǎn)在的延長(zhǎng)線(xiàn)上時(shí),同理可求出的長(zhǎng).【詳解】解:如圖1,當(dāng)點(diǎn)在上時(shí),四邊形是矩形,,,,平分,,,,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共14頁(yè),當(dāng)前為第14頁(yè)。,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共14頁(yè),當(dāng)前為第14頁(yè)。;如圖2,當(dāng)點(diǎn)在的延長(zhǎng)線(xiàn)上時(shí),同理,.故答案為:5或1.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是正確畫(huà)出兩種圖形.15.【分析】作點(diǎn)C關(guān)于AB的對(duì)稱(chēng)點(diǎn)F,關(guān)于AO的對(duì)稱(chēng)點(diǎn)G,連接DF,EG,由軸對(duì)稱(chēng)的性質(zhì),可得DF=DC,EC=EG,故當(dāng)點(diǎn)F,D,E,G在同一直線(xiàn)上時(shí),△CDE的周長(zhǎng)=CD+DE+CE=DF+DE解析:【分析】作點(diǎn)C關(guān)于AB的對(duì)稱(chēng)點(diǎn)F,關(guān)于AO的對(duì)稱(chēng)點(diǎn)G,連接DF,EG,由軸對(duì)稱(chēng)的性質(zhì),可得DF=DC,EC=EG,故當(dāng)點(diǎn)F,D,E,G在同一直線(xiàn)上時(shí),△CDE的周長(zhǎng)=CD+DE+CE=DF+DE+EG=FG,此時(shí)△DEC周長(zhǎng)最小,然后求出F、G的坐標(biāo)從而求出直線(xiàn)FG的解析式,再求出直線(xiàn)AB和直線(xiàn)FG的交點(diǎn)坐標(biāo)即可得到答案.【詳解】解:如圖,作點(diǎn)C關(guān)于AB的對(duì)稱(chēng)點(diǎn)F,關(guān)于AO的對(duì)稱(chēng)點(diǎn)G,連接FG分別交AB、OA于點(diǎn)D、E,由軸對(duì)稱(chēng)的性質(zhì)可知,CD=DF,CE=GE,BF=BC,∠FBD=∠CBD,∴△CDE的周長(zhǎng)=CD+CE+DE=FD+DE+EG,∴要使三角形CDE的周長(zhǎng)最小,即FD+DE+EG最小,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共15頁(yè),當(dāng)前為第15頁(yè)?!喈?dāng)F、D、E、G四點(diǎn)共線(xiàn)時(shí),F(xiàn)D+DE+EG最小,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共15頁(yè),當(dāng)前為第15頁(yè)?!咧本€(xiàn)y=x+2與兩坐標(biāo)軸分別交于A、B兩點(diǎn),∴B(-2,0),∴OA=OB,∴∠ABC=∠ABD=45°,∴∠FBC=90°,∵點(diǎn)C是OB的中點(diǎn),∴C(,0),∴G點(diǎn)坐標(biāo)為(1,0),,∴F點(diǎn)坐標(biāo)為(-2,),設(shè)直線(xiàn)GF的解析式為,∴,∴,∴直線(xiàn)GF的解析式為,聯(lián)立,解得,∴D點(diǎn)坐標(biāo)為(,)故答案為:(,).【點(diǎn)睛】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共16頁(yè),當(dāng)前為第16頁(yè)。本題主要考查了軸對(duì)稱(chēng)-最短路線(xiàn)問(wèn)題,一次函數(shù)與幾何綜合,解題的關(guān)鍵是利用對(duì)稱(chēng)性在找到△CDE周長(zhǎng)的最小時(shí)點(diǎn)D、點(diǎn)E位置,凡是涉及最短距離的問(wèn)題,一般要考慮線(xiàn)段的性質(zhì)定理,多數(shù)情況要作點(diǎn)關(guān)于某直線(xiàn)的對(duì)稱(chēng)點(diǎn).人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共16頁(yè),當(dāng)前為第16頁(yè)。16.7或.【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)落在矩形內(nèi)部時(shí),連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)、、共線(xiàn),即沿折疊,使點(diǎn)落在對(duì)角線(xiàn)上的點(diǎn)解析:7或.【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)落在矩形內(nèi)部時(shí),連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)、、共線(xiàn),即沿折疊,使點(diǎn)落在對(duì)角線(xiàn)上的點(diǎn)處,則,,可計(jì)算出,設(shè),則,然后在中運(yùn)用勾股定理可計(jì)算出.②當(dāng)點(diǎn)落在邊上時(shí),如圖所示.此時(shí)四邊形為正方形,根據(jù),.【詳解】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)落在矩形內(nèi)部時(shí),如下圖所示.連接,在中,,,,沿折疊,使點(diǎn)落在點(diǎn)處,,當(dāng)為直角三角形時(shí),只能得到,點(diǎn)、、共線(xiàn),即沿折疊,使點(diǎn)落在對(duì)角線(xiàn)上的點(diǎn)處,∴,,,設(shè),則,在中,,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共17頁(yè),當(dāng)前為第17頁(yè)。,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共17頁(yè),當(dāng)前為第17頁(yè)。解得,;②當(dāng)點(diǎn)落在邊上時(shí),如下圖所示,此時(shí)為正方形,∴.綜上所述,的長(zhǎng)為7或.【點(diǎn)睛】本題考查了折疊問(wèn)題,矩形的性質(zhì)以及勾股定理,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三、解答題17.(1);(2).【分析】(1)根據(jù)二次根式的混合運(yùn)算的法則計(jì)算即可;(2)利用平方差公式和完全平方公式展開(kāi),再合并即可.【詳解】解:(1);(2).【點(diǎn)睛】本題考查了二次根式解析:(1);(2).【分析】(1)根據(jù)二次根式的混合運(yùn)算的法則計(jì)算即可;(2)利用平方差公式和完全平方公式展開(kāi),再合并即可.【詳解】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共18頁(yè),當(dāng)前為第18頁(yè)。解:(1)人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共18頁(yè),當(dāng)前為第18頁(yè)。;(2).【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)鍵.18.梯腳外移0.8米.【分析】直角利用勾股定理求出AO,ON的長(zhǎng),再利用NB=ON-OB,即可求出答案.【詳解】解:由題意得:AB=2.5米,BO=0.7米,在Rt△ABO中,由勾股定理得:解析:梯腳外移0.8米.【分析】直角利用勾股定理求出AO,ON的長(zhǎng),再利用NB=ON-OB,即可求出答案.【詳解】解:由題意得:AB=2.5米,BO=0.7米,在Rt△ABO中,由勾股定理得:(米).∴MO=AO-AM=2.4-0.4=2(米),在Rt△MNO中,由勾股定理得:(米).∴NB=ON-OB=1.5-0.7=0.8(米),∴梯腳B外移(即BN長(zhǎng))0.8米.【點(diǎn)睛】本題主要考查了勾股定理的應(yīng)用,讀懂題意,正確應(yīng)用勾股定理是解題的關(guān)鍵.19.(1);(2)畫(huà)圖見(jiàn)解析,3a2【解析】【分析】(1)利用割補(bǔ)法求值;(2)已知邊長(zhǎng)AB=,再確定另兩條邊分別是以2a和2a為直角三角形的兩直角邊的斜邊長(zhǎng)及以a和2a為直角邊的斜邊長(zhǎng),即,連解析:(1);(2)畫(huà)圖見(jiàn)解析,3a2【解析】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共19頁(yè),當(dāng)前為第19頁(yè)。【分析】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共19頁(yè),當(dāng)前為第19頁(yè)。(1)利用割補(bǔ)法求值;(2)已知邊長(zhǎng)AB=,再確定另兩條邊分別是以2a和2a為直角三角形的兩直角邊的斜邊長(zhǎng)及以a和2a為直角邊的斜邊長(zhǎng),即,連接得到三角形求出面積即可.【詳解】解:(1),故答案為:;(2)如圖,.【點(diǎn)睛】此題考查利用割補(bǔ)法求網(wǎng)格中圖形的面積,網(wǎng)格中作圖,正確掌握利用勾股定理求無(wú)理數(shù)長(zhǎng)度的線(xiàn)段并畫(huà)圖是解題的關(guān)鍵.20.(1)見(jiàn)解析;(2)證明見(jiàn)解析;探究:菱形【分析】(1)根據(jù)矩形性質(zhì)直接根據(jù)邊角邊證明△ABE≌DCF即可;(2)證明AE∥DF,AE=DF,可得結(jié)論;探究:證明FD=FE,可得結(jié)論.【詳解析:(1)見(jiàn)解析;(2)證明見(jiàn)解析;探究:菱形【分析】(1)根據(jù)矩形性質(zhì)直接根據(jù)邊角邊證明△ABE≌DCF即可;(2)證明AE∥DF,AE=DF,可得結(jié)論;探究:證明FD=FE,可得結(jié)論.【詳解】.證明:(1)∵四邊形ABCD為矩形,∴AB=DC,∠B=∠DCF,∵BE=CF,∴△ABE≌DCF;(2)∵△ABE≌DCF,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共20頁(yè),當(dāng)前為第20頁(yè)?!唷螦EB=∠F,AE=DF,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共20頁(yè),當(dāng)前為第20頁(yè)?!郃E∥DF,∴AE=DF,∴四邊形AEFD是平行四邊形.(3)此時(shí)四邊形AEFD是菱形.理由:如圖1中,連接DE.∵DE平分∠AEC,∴∠AED=∠DEF,∵AD∥EF,∴∠ADE=∠DEF,∴∠ADE=∠AED,∴AD=AE,∵四邊形AEFD是平行四邊形,∴四邊形AEFD是菱形.【點(diǎn)睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),菱形的判定等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考??碱}型.21.(1)5;(2)5.【解析】【詳解】試題分析:根據(jù)平方差公式,可分母有理化,根據(jù)整體代入,可得答案.試題解析:(1)∵a=,∴4a2-8a+1=4×()2-8×()+1=5;(2)解析:(1)5;(2)5.【解析】【詳解】試題分析:根據(jù)平方差公式,可分母有理化,根據(jù)整體代入,可得答案.試題解析:(1)∵a=,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共21頁(yè),當(dāng)前為第21頁(yè)。∴4a2-8a+1人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共21頁(yè),當(dāng)前為第21頁(yè)。=4×()2-8×()+1=5;(2)原式=×(?1+?+?+…+?)=×(-1)=×10=5.點(diǎn)睛:本題主要考查了分母有理化,利用分母有理化化簡(jiǎn)是解答此題的關(guān)鍵.22.(1)42;(2)5,24;(3)Q=﹣6t+42,(0≤t≤5)【分析】(1)根據(jù)圖象開(kāi)始時(shí)Q的值即可得出結(jié)論;(2)根據(jù)圖象,中途Q增大的位置即可得出結(jié)論;(3)根據(jù)圖象上的兩個(gè)點(diǎn),用待解析:(1)42;(2)5,24;(3)Q=﹣6t+42,(0≤t≤5)【分析】(1)根據(jù)圖象開(kāi)始時(shí)Q的值即可得出結(jié)論;(2)根據(jù)圖象,中途Q增大的位置即可得出結(jié)論;(3)根據(jù)圖象上的兩個(gè)點(diǎn),用待定系數(shù)法即可.【詳解】解:(1)由圖象知,t=0時(shí),Q=42,∴開(kāi)始時(shí),汽車(chē)的油量a=42升,故答案為42;(2)當(dāng)t=5時(shí),Q的值增大,∴在行駛5小時(shí)時(shí)加油,加油量為36﹣12=24升,故答案為5,24;(3)加油前,圖像上有兩點(diǎn)(0,42),(5,12),設(shè)Q與t的關(guān)系式為Q=kt+b,代入(0,42),(5,12),得:,解得,∴Q=﹣6t+42,(0≤t≤5).【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用,關(guān)鍵是要會(huì)用待定系數(shù)法求一次函數(shù)的解析式.23.(1);(2)證明見(jiàn)解析;(3).【分析】人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共22頁(yè),當(dāng)前為第22頁(yè)。(1)由平行四邊形的性質(zhì)得到AD//BC,∠ABC=∠ADC=60°,再根據(jù)F、D、A三點(diǎn)共線(xiàn)得到∠ABC=∠FAB=60°,再分別求出線(xiàn)段的BF人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共22頁(yè),當(dāng)前為第22頁(yè)。解析:(1);(2)證明見(jiàn)解析;(3).【分析】(1)由平行四邊形的性質(zhì)得到AD//BC,∠ABC=∠ADC=60°,再根據(jù)F、D、A三點(diǎn)共線(xiàn)得到∠ABC=∠FAB=60°,再分別求出線(xiàn)段的BF、FD、BD長(zhǎng)度即可;(2)連接QE,延長(zhǎng)FP至點(diǎn)H,使得PH=FQ,由“SAS”可證△FAB≌△QAE,△FBP≌△QEH,可得EP=BP;(3)連接MC,以MC為邊作等邊三角形MEC,過(guò)點(diǎn)C作CP⊥AD于P,連接EH,并延長(zhǎng)EH交CP于G,過(guò)點(diǎn)E作AD的垂線(xiàn)交BC于R,交AD于Q,由“SAS”可證△MEH≌△MCN,可得∠MEH=∠MCN,可證EHBC,則點(diǎn)H在過(guò)點(diǎn)E平行BC的直線(xiàn)上運(yùn)動(dòng),作點(diǎn)C關(guān)于EH的對(duì)稱(chēng)點(diǎn)C′,連接BC′,即的BC′長(zhǎng)度為BH+CH的最小值,利用勾股定理列出方程組可求解.【詳解】解:(1)如圖①,在平行四邊形ABCD中,∠ADC=60°∴AD//BC,∠AВC=∠ADC=60°∵F、D、A三點(diǎn)共線(xiàn)∴FD∥BC∴∠ABC=∠FAB=60°∵E、D重合,AB=AE,AD=2∴AD=AE=AB=2=BC=CD∴∠ADB=30°在Rt△FBD,∠AFB=90°,∠ABF=90°-60°=30°∴AF=1∴∴四邊形CBFD的周長(zhǎng);(2)如圖②,連接QE,延長(zhǎng)FP至點(diǎn)H,使得PH=FQ,連接EH,則PH+PQ=FQ+PQ∴FP=QH∵∠AFB=90°∴∠2+∠3=90°∵∠2+∠1=90°∴∠1=∠3∴AF=AQ在平行四邊形ABCD中,F(xiàn)、A、D共線(xiàn),∴AB∥CD,∠C+∠D=180°∴∠5=∠D∵∠C+∠QAE=180∴∠4=∠D∴∠4=∠5人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共23頁(yè),當(dāng)前為第23頁(yè)?!逜B=AE人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共23頁(yè),當(dāng)前為第23頁(yè)?!唷鱂AB≌△QAE(SAS)∴∠AQE=∠AFB=90°,F(xiàn)B=QE∴∠6+∠1=90°,∠2=∠6∴△FBP≌△QEH(SAS)∴BP=ЕН,∠H=∠7∴∠7=∠8∴∠H=∠8∴ЕН=ЕР∴EР=BP(3)如圖③,連接MC,以MC為邊作等邊三角形MEC,過(guò)點(diǎn)C作CP⊥AD于P,連接EH,并延長(zhǎng)EH交CP于G,過(guò)點(diǎn)E作AD的垂線(xiàn)交BC于R,交AD于Q∵△MEC和△MNH是等邊三角形,∴ME=MC,MN=MH,∠EMC=∠HMN=60°∴∠EMH=∠CMN∴△MEH≌△MCN(SAS)∴∠MEH=∠MCN∵四邊形ABCD是平行四邊形,∠ABC=60°∴∠ADC=∠ABC=60°,∠BCD=120°,AD=BC=8,AB=CD=6,AD∥BC∴∠BCE+∠MCD=∠BCD-∠ECM=120°-60°=60°∵∠MЕН+∠CEH=∠MEC=60°∴∠CEH=∠ЕС?!郋Н//BC∴點(diǎn)H在過(guò)點(diǎn)E平行BC的直線(xiàn)上運(yùn)動(dòng),作點(diǎn)C關(guān)于EH的對(duì)稱(chēng)點(diǎn)C′,連接BC′,即BC′的長(zhǎng)度為BH+CH的最小值∵∠ADC=60°,CD⊥AD∴∠PCD=30,∴,∵點(diǎn)M是AD的中點(diǎn)∴AM=MD=4∴MP=1∴人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共24頁(yè),當(dāng)前為第24頁(yè)。∴人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共24頁(yè),當(dāng)前為第24頁(yè)?!逺Q⊥AD,CP⊥AD,AD∥BC,EG//BC∴RQ⊥BC,PC⊥AD,RQ⊥EG,PC⊥EG∴四邊形CPQR是矩形,四邊形ERCG是矩形∴,,設(shè),在Rt△ERC中在Rt△QEM中∴解得或(舍去)∴解得,∴∵C關(guān)于EH的對(duì)稱(chēng)點(diǎn)是C′∴∴∴∴BH+CH的最小值為.【點(diǎn)睛】本題是四邊形綜合題,考查了平行四邊形的性質(zhì),等腰三角形的性質(zhì),矩形的性質(zhì)與判定,全等三角形的性質(zhì)與判定,勾股定理等知識(shí),確定H的運(yùn)動(dòng)軌跡是解題的關(guān)鍵.24.(1)證明見(jiàn)解析;(2)存在,;(3)存在,或.【解析】【分析】(1)說(shuō)明出后,再利用矩形的性質(zhì)得到,即可完成求證;(2)先設(shè),依次表示各點(diǎn)坐標(biāo)與相應(yīng)線(xiàn)段長(zhǎng),再利用菱形的判定,令一組鄰邊相等解析:(1)證明見(jiàn)解析;(2)存在,;(3)存在,或.【解析】【分析】(1)說(shuō)明出后,再利用矩形的性質(zhì)得到,即可完成求證;人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共25頁(yè),當(dāng)前為第25頁(yè)。(2)先設(shè),依次表示各點(diǎn)坐標(biāo)與相應(yīng)線(xiàn)段長(zhǎng),再利用菱形的判定,令一組鄰邊相等建立關(guān)于x的方程,解方程后,則各點(diǎn)坐標(biāo)得以確定,然后利用待定系數(shù)法即可求出直線(xiàn)PQ的解析式;人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共25頁(yè),當(dāng)前為第25頁(yè)。(3)先設(shè)出D點(diǎn)坐標(biāo),再分別表示出、、,利用勾股定理的逆定理分類(lèi)討論求解即可.【詳解】解:(1)證:∵點(diǎn)P,Q同時(shí)以相同的速度分別從點(diǎn)O,B出發(fā),∴,又∵矩形,∴,∴四邊形是平行四邊形.(2)存在;理由:∵矩形且點(diǎn)B的坐標(biāo)為,∴,;設(shè)∴,∴,當(dāng)四邊形是菱形時(shí),則,∴,解得:,∴,∴,,設(shè)直線(xiàn)的解析式為:;∴,解得:,∴直線(xiàn)的解析式為:;(3)由(2)知,設(shè),∴,,當(dāng)時(shí),,解得:,此時(shí),∴,此時(shí)點(diǎn)與點(diǎn)重合,不合題意,故舍去;當(dāng)時(shí),,解得:,(舍去),此時(shí),,∴;人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共26頁(yè),當(dāng)前為第26頁(yè)。當(dāng)時(shí),,解得:,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共26頁(yè),當(dāng)前為第26頁(yè)。此時(shí),,∴;綜上可得:或.【點(diǎn)睛】本題綜合考查了矩形的性質(zhì)、待定系數(shù)法求一次函數(shù)解析式、平行四邊形的判定定理、菱形的判定定理、勾股定理及其逆定理等內(nèi)容,同時(shí)涉及到了解一元二次方程等知識(shí),本題綜合性較強(qiáng),要求學(xué)生具備一定的綜合分析能力和計(jì)算能力,本題蘊(yùn)含了分類(lèi)討論和數(shù)形結(jié)合的思想方法等.25.(1);;(2)①見(jiàn)詳解;②x=1;(3)△CDP為等腰三角形時(shí)x的值為:或或.【分析】(1)BP+DP為點(diǎn)B到D兩段折線(xiàn)的和.由兩點(diǎn)間線(xiàn)段最短可知,連接DB,若P點(diǎn)落在BD上,此時(shí)和最短,且為解析:(1);;(2)①見(jiàn)詳解;②x=1;(3)△CDP為等腰三角形時(shí)x的值為:或或.【分析】(1)BP+DP為點(diǎn)B到D兩段折線(xiàn)的和.由兩點(diǎn)間線(xiàn)段最短可知,連接DB,若P點(diǎn)落在BD上,此時(shí)和最短,且為.考慮動(dòng)點(diǎn)運(yùn)動(dòng),這種情形是存在的,由AQ=x,則QD=3-x,PQ=x.又PDQ=45°,所以QD=PQ,即3-x=x.求解可得答案;(2)由已知條件對(duì)稱(chēng)分析,AB=BP=BC,則∠BCP=∠BPC,由∠BPM=∠BCM=90°,可得∠MPC=∠MCP.那么若有MP=MD,則結(jié)論可證.再分析新條件∠CPD=90°,易得①結(jié)論.②求x的值,通常都是考慮勾股定理,選擇直角三角形QDM,發(fā)現(xiàn)QM,DM,QD都可用x來(lái)表示,進(jìn)而易得方程,求解即可.(3)若△CDP為等腰三角形,則邊CD比為改等腰三角形的一腰或者底邊.又P點(diǎn)為A點(diǎn)關(guān)于QB的對(duì)稱(chēng)點(diǎn),則AB=PB,以點(diǎn)B為圓心,以AB的長(zhǎng)為半徑畫(huà)弧,則P點(diǎn)只能在弧AB上.若CD為腰,以點(diǎn)C為圓心,以CD的長(zhǎng)為半徑畫(huà)弧,兩弧交點(diǎn)即為使得△CDP為等腰三角形(CD為腰)的P點(diǎn).若CD為底邊,則作CD的垂直平分線(xiàn),其與弧AC的交點(diǎn)即為使得△CDP為等腰三角形(CD為底)的P點(diǎn).則如圖所示共有三個(gè)P點(diǎn),那么也共有3個(gè)Q點(diǎn).作輔助線(xiàn),利用直角三角形性質(zhì)求之即可.【詳解】解:(1)連接DB,若P點(diǎn)落在BD上,此時(shí)BP+DP最短,如圖:人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共27頁(yè),當(dāng)前為第27頁(yè)。人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共27頁(yè),當(dāng)前為第27頁(yè)。由題意,∵正方形ABCD的邊長(zhǎng)為3,∴,∴BP+DP的最小值是;由折疊的性質(zhì),,則,∵∠PDQ=45°,∠QPD=90°,∴△QPD是等腰直角三角形,∴,∴,解得:;故答案為:;;(2)如圖所示:①證明:在正方形ABCD中,有AB=BC,∠A=∠BCD=90°.∵P點(diǎn)為A點(diǎn)關(guān)于BQ的對(duì)稱(chēng)點(diǎn),∴AB=PB,∠A=∠QPB=90°,∴PB=BC,∠BPM=∠BCM,∴∠BPC=∠BCP,∴∠MPC=∠MPB-∠CPB=∠MCB-∠PCB=∠MCP,∴MP=MC.在Rt△PDC中,∵∠PDM=90°-∠PCM,∠DPM=90°-∠MPC,∴∠PDM=∠DPM,∴MP=MD,∴CM=MP=MD,即M為CD的中點(diǎn).②解:∵AQ=x,AD=3,∴QD=3-x,PQ=x,CD=3.在Rt△DPC中,∵M(jìn)為CD的中點(diǎn),人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共28頁(yè),當(dāng)前為第28頁(yè)?!郉M=QM=CM=,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共28頁(yè),當(dāng)前為第28頁(yè)?!郠M=PQ+PM=x+,∴(x+)2=(3?x)2+()2,解得:x=1.(3)如圖,以點(diǎn)B為圓心,以AB的長(zhǎng)為半徑畫(huà)弧,以點(diǎn)C為圓心,以CD的長(zhǎng)為半徑畫(huà)弧,兩弧分別交于P1,P3.此時(shí)△CDP1,△CDP3都為以CD為腰的等腰三角形.作CD的垂直平分線(xiàn)交弧AC于點(diǎn)P2,此時(shí)△CDP2以CD為底的等腰三角形.;①討論P(yáng)1,如圖作輔助線(xiàn),連接BP1、CP1,作QP1⊥BP1交AD于Q,過(guò)點(diǎn)P1,作EF⊥AD于E,交BC于F.∵△BCP1為等邊三角形,正方形ABCD邊長(zhǎng)為3,∴P1F=,P1E=.在四邊形ABP1Q中,∵∠ABP1=30°,∴∠AQP1=150°,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共29頁(yè),當(dāng)前為第29頁(yè)。∴△QEP1為含30°的直角三角形,人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共29頁(yè),當(dāng)前為第29頁(yè)?!郠E=EP1=.∵AE=,∴x=AQ=AE-QE=.②討論P(yáng)2,如圖作輔助線(xiàn),連接BP2,AP2,過(guò)點(diǎn)P2作QG⊥BP2,交AD于Q,連接BQ,過(guò)點(diǎn)P2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AP2=BP2.∵AB=BP2,∴△ABP2為等邊三角形.在四邊形ABP2Q中,∵∠BAD=∠BP2Q=90°,∠ABP2=60°,∴∠AQG=120°∴∠EP2G=∠DQG=180°-120°=60°,∴P2E=,∴EG=,∴DG=DE+GE=,∴QD=,∴x=AQ=3-QD=.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共30頁(yè),當(dāng)前為第30頁(yè)。③對(duì)P3,如圖作輔助線(xiàn),連接BP1,CP1,BP3,CP3,過(guò)點(diǎn)P3作BP3⊥QP3,交AD的延長(zhǎng)線(xiàn)于Q,連接BQ,過(guò)點(diǎn)P1,作EF⊥AD于E,此時(shí)P3在EF上,不妨記P3與F重合.人教版八年級(jí)期末試卷培優(yōu)測(cè)試卷全文共30頁(yè),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年詞匯英語(yǔ)中考試題及答案
- 古詩(shī)考試題型選擇及答案
- 2025年理論考查課考試題及答案
- 師大附小筆試題目及答案
- 化學(xué)與極地科學(xué)研究(極地環(huán)境)聯(lián)系試題
- 化學(xué)情景判斷題專(zhuān)項(xiàng)試題
- 古羅馬考試題目及答案
- 中國(guó)工商考試試題及答案
- 2025年高考物理“壓軸題解密”思路方法試題(一)
- 2025廣西科技大學(xué)招聘附屬醫(yī)院(臨床醫(yī)學(xué)院)領(lǐng)導(dǎo)干部3人考前自測(cè)高頻考點(diǎn)模擬試題及1套參考答案詳解
- 自考:【00107現(xiàn)代管理學(xué)】自考真題2018年4月、10月2套真題
- 組織學(xué)與胚胎學(xué)課件 組織與胚胎學(xué)筆記學(xué)習(xí)資料
- 《公路技術(shù)狀況評(píng)定》課件-任務(wù)六:公路技術(shù)狀況指數(shù)MQI
- Unit 3 Amazing animals Section A What pets do you know 說(shuō)課(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 中級(jí)財(cái)務(wù)會(huì)計(jì)知到課后答案智慧樹(shù)章節(jié)測(cè)試答案2025年春云南財(cái)經(jīng)大學(xué)
- 2025青海省建筑安全員B證考試題庫(kù)及答案
- 現(xiàn)代紡織物清潔技術(shù)培訓(xùn)匯報(bào)教程
- 臨床檢驗(yàn)基礎(chǔ)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋上海健康醫(yī)學(xué)院
- 鑄牢中華民族共同體意識(shí)心得感悟7篇
- 《中國(guó)海洋大學(xué)》課件
- 神話(huà)故事民間故事《后羿射日》繪本課件
評(píng)論
0/150
提交評(píng)論