




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年合肥市重點中學中考數(shù)學全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標系中,平行四邊形OABC的頂點A的坐標為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y=kx(k>0,x>0)的圖象經(jīng)過點C,則A.33B.32C.22.民族圖案是數(shù)學文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是()
A. B. C. D.3.下列事件中,屬于不確定事件的是()A.科學實驗,前100次實驗都失敗了,第101次實驗會成功B.投擲一枚骰子,朝上面出現(xiàn)的點數(shù)是7點C.太陽從西邊升起來了D.用長度分別是3cm,4cm,5cm的細木條首尾順次相連可組成一個直角三角形4.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-25.等腰三角形兩邊長分別是2cm和5cm,則這個三角形周長是()A.9cmB.12cmC.9cm或12cmD.14cm6.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a(chǎn)2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)7.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近8.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點A,B在圍成的正方體中的距離是()A.0 B.1 C. D.9.tan45o的值為()A. B.1 C. D.10.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,211.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結論正確的個數(shù)是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個12.小紅上學要經(jīng)過三個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望小學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.用科學計數(shù)器計算:2×sin15°×cos15°=_______(結果精確到0.01).14.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為_____.15.將一張長方形紙片折疊成如圖所示的形狀,若∠DBC=56°,則∠1=_____°.16.如圖,在△ABC中,BC=7,,tanC=1,點P為AB邊上一動點(點P不與點B重合),以點P為圓心,PB為半徑畫圓,如果點C在圓外,那么PB的取值范圍______.17.函數(shù)y=的自變量x的取值范圍為____________.18.如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P與點B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點C落到點F處;過點P作∠BPF的角平分線交AB于點E.設BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是()三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,一次函數(shù)y=﹣x+2的圖象交x軸于點P,二次函數(shù)y=﹣x2+x+m的圖象與x軸的交點為(x1,0)、(x2,0),且+=17(1)求二次函數(shù)的解析式和該二次函數(shù)圖象的頂點的坐標.(2)若二次函數(shù)y=﹣x2+x+m的圖象與一次函數(shù)y=﹣x+2的圖象交于A、B兩點(點A在點B的左側),在x軸上是否存在點M,使得△MAB是以∠ABM為直角的直角三角形?若存在,請求出點M的坐標;若不存在,請說明理由.20.(6分)在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關系是________.21.(6分)近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.(1)求單車車座E到地面的高度;(結果精確到1cm)(2)根據(jù)經(jīng)驗,當車座E到CB的距離調整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調整至座椅舒適高度位置E′,求EE′的長.(結果精確到0.1cm)(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.(8分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.23.(8分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.24.(10分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)25.(10分)某初中學校組織200位同學參加義務植樹活動.甲、乙兩位同學分別調查了30位同學的植樹情況,并將收集的數(shù)據(jù)進行了整理,繪制成統(tǒng)計表1和表2:表1:甲調查九年級30位同學植樹情況每人植樹棵數(shù)78910人數(shù)36156表2:乙調查三個年級各10位同學植樹情況每人植樹棵數(shù)678910人數(shù)363126根據(jù)以上材料回答下列問題:(1)關于于植樹棵數(shù),表1中的中位數(shù)是棵;表2中的眾數(shù)是棵;(2)你認為同學(填“甲”或“乙”)所抽取的樣本能更好反映此次植樹活動情況;(3)在問題(2)的基礎上估計本次活動200位同學一共植樹多少棵?26.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結DE,OE、OD,求證:DE是⊙O的切線.27.(12分)某中學九年級數(shù)學興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進6米到達D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結果精確到米,,
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:∵四邊形ABCD是平行四邊形,點A的坐標為(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故選D.點睛:本題考查了平行四邊形的性質,掌握平行四邊形的性質以及反比例函數(shù)圖象上點的坐標特征是解題的關鍵.2、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項正確;D、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤.故選C.3、A【解析】
根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是不可能事件,故C不符合題意;D、是必然事件,故D不符合題意;故選A.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、D【解析】
把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù),而平移時,頂點的縱坐標不變,即可求得函數(shù)解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點坐標是(﹣1,﹣1).由題知:把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù).∵左、右平移時,頂點的縱坐標不變,∴平移后的頂點坐標為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點的橫坐標不變;左右平移時,點的縱坐標不變.同時考查了二次函數(shù)的性質,正比例函數(shù)y=﹣x的圖象上點的坐標特征.5、B【解析】當腰長是2cm時,因為2+2<5,不符合三角形的三邊關系,排除;當腰長是5cm時,因為5+5>2,符合三角形三邊關系,此時周長是12cm.故選B.6、C【解析】
因式分解是把一個多項式化為幾個整式的積的形式,據(jù)此進行解答即可.【詳解】解:A、B、D三個選項均不是把一個多項式化為幾個整式的積的形式,故都不是因式分解,只有C選項符合因式分解的定義,故選擇C.【點睛】本題考查了因式分解的定義,牢記定義是解題關鍵.7、D【解析】
根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.8、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質;熟練掌握正方形的性質和勾股定理,并能進行推理計算是解決問題的關鍵.由正方形的性質和勾股定理求出AB的長,即可得出結果.解:連接AB,如圖所示:根據(jù)題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點:1.勾股定理;2.展開圖折疊成幾何體.9、B【解析】
解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數(shù)值.10、D【解析】
根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.11、C【解析】
①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標的性質、三角形的面積求法、相似三角形的性質和判定、平行線等分線段定理、函數(shù)圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數(shù)形結合的數(shù)學思想方法.12、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個路口都是綠燈的有一種,∴實際這樣的機會是.故選B.點睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時要注意列出所有的情形.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、0.50【解析】
直接使用科學計算器計算即可,結果需保留二位有效數(shù)字.【詳解】用科學計算器計算得0.5,故填0.50,【點睛】此題主要考查科學計算器的使用,注意結果保留二位有效數(shù)字.14、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉的性質可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉的性質以及等邊三角形的判定與性質.此題比較簡單,注意掌握旋轉前后圖形的對應關系,注意數(shù)形結合思想的應用.15、62【解析】
根據(jù)折疊的性質得出∠2=∠ABD,利用平角的定義解答即可.【詳解】解:如圖所示:由折疊可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案為62.【點睛】本題考查了折疊變換的知識以及平行線的性質的運用,根據(jù)折疊的性質得出∠2=∠ABD是關鍵.16、【解析】分析:根據(jù)題意作出合適的輔助線,然后根據(jù)題意即可求得PB的取值范圍.詳解:作AD⊥BC于點D,作PE⊥BC于點E.∵在△ABC中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由題意可得,當PB=PC時,點C恰好在以點P為圓心,PB為半徑圓上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案為0<PB<.點睛:本題考查了點與圓的位置關系、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.17、x≥-1【解析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點:函數(shù)自變量的取值范圍.18、C【解析】
先證明△BPE∽△CDP,再根據(jù)相似三角形對應邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點:1.折疊問題;2.相似三角形的判定和性質;3.二次函數(shù)的圖象.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+x+2=(x﹣)2+,頂點坐標為(,);(2)存在,點M(,0).理由見解析.【解析】
(1)由根與系數(shù)的關系,結合已知條件可得9+4m=17,解方程求得m的值,即可得求得二次函數(shù)的解析式,再求得該二次函數(shù)圖象的頂點的坐標即可;(2)存在,將拋物線表達式和一次函數(shù)y=﹣x+2聯(lián)立并解得x=0或,即可得點A、B的坐標為(0,2)、(,),由此求得PB=,AP=2,過點B作BM⊥AB交x軸于點M,證得△APO∽△MPB,根據(jù)相似三角形的性質可得,代入數(shù)據(jù)即可求得MP=,再求得OM=,即可得點M的坐標為(,0).【詳解】(1)由題意得:x1+x2=3,x1x2=﹣2m,x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,解得:m=2,拋物線的表達式為:y=﹣x2+x+2=(x﹣)2+,頂點坐標為(,);(2)存在,理由:將拋物線表達式和一次函數(shù)y=﹣x+2聯(lián)立并解得:x=0或,∴點A、B的坐標為(0,2)、(,),一次函數(shù)y=﹣x+2與x軸的交點P的坐標為(6,0),∵點P的坐標為(6,0),B的坐標為(,),點B的坐標為(0,2)、∴PB==,AP==2過點B作BM⊥AB交x軸于點M,∵∠MBP=∠AOP=90°,∠MPB=∠APO,∴△APO∽△MPB,∴,∴,∴MP=,∴OM=OP﹣MP=6﹣=,∴點M(,0).【點睛】本題是一道二次函數(shù)的綜合題,一元二次方程根與系數(shù)的關系、直線與拋物線的較大坐標.相似三角形的判定與性質,題目較為綜合,有一定的難度,解決第二問的關鍵是求得PB、AP的長,再利用相似三角形的性質解決問題.20、見解析【解析】(1)如圖:(2)連接AD、CF,則這兩條線段之間的關系是AD=CF,且AD∥CF.21、(1)81cm;(2)8.6cm;【解析】
(1)作EM⊥BC于點M,由EM=ECsin∠BCE可得答案;(2)作E′H⊥BC于點H,先根據(jù)E′C=求得E′C的長度,再根據(jù)EE′=CE′﹣CE可得答案.【詳解】(1)如圖1,過點E作EM⊥BC于點M.由題意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,則單車車座E到地面的高度為51.3+30≈81cm;(2)如圖2所示,過點E′作E′H⊥BC于點H.由題意知E′H=70×0.85=59.5,則E′C==≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).【點睛】本題考查了解直角三角形的應用,解題的關鍵是明確題意,利用銳角三角函數(shù)進行解答.22、(1);(2),;(3)【解析】試題分析:(1)根據(jù)反比例函數(shù)圖象上點的坐標特征易得k=2;(2)作BH⊥AD于H,如圖1,根據(jù)反比例函數(shù)圖象上點的坐標特征確定B點坐標為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數(shù)圖象上,可設M點坐標為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標為t,利用一次函數(shù)圖象上點的坐標特征得到N點坐標為(t,t﹣1),則MN=﹣t+1,根據(jù)三角形面積公式得到S△CMN=?t?(﹣t+1),再進行配方得到S=﹣(t﹣)2+(0<t<2),最后根據(jù)二次函數(shù)的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數(shù)解析式y(tǒng)=,得a=2,∴B點坐標為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標為(0,﹣1),設直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設M點坐標為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標為t,∴N點坐標為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當t=時,S有最大值,最大值為.23、(1);(2).【解析】
(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據(jù)一共出現(xiàn)的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據(jù)表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南礦產(chǎn)集團子公司招聘16人考前自測高頻考點模擬試題含答案詳解
- 那時陽光下這時陽光下初中作文14篇范文
- 2025甘肅武威市事業(yè)單位招聘628人考前自測高頻考點模擬試題附答案詳解(黃金題型)
- 2025福建福州市馬尾區(qū)文化體育和旅游局下屬單位福州市馬尾區(qū)文化館招聘編外聘用人員1人模擬試卷有答案詳解
- 2025福建龍巖市上杭縣總醫(yī)院引進醫(yī)學類臺灣人才1人模擬試卷附答案詳解(黃金題型)
- 2025江蘇金灌投資發(fā)展集團有限公司、灌南城市發(fā)展集團有限公司招聘高層次人才10人考前自測高頻考點模擬試題及答案詳解(全優(yōu))
- 2025年臨沂市工程學校公開招聘教師(15名)模擬試卷及答案詳解(名師系列)
- 2025年4月廣東潮州市第三人民醫(yī)院招聘編外人員49人模擬試卷及答案詳解(有一套)
- 2025年福建省福州市平潭綜合實驗區(qū)人才發(fā)展集團有限公司招聘6人考前自測高頻考點模擬試題及答案詳解(易錯題)
- 湖南省名校聯(lián)盟2024-2025學年高一上學期開學質量檢測地理地理試題(解析版)
- 小兒鎮(zhèn)靜課件
- 光伏建筑投標文件范本
- 2025年藥店員工培訓考試試題(附答案)
- 民辦學校招生方案及推廣策略實操指南
- 公益慈善投資策略-洞察及研究
- 碳排放咨詢員基礎技能培訓手冊
- 普及金融知識課件
- 軍兵種知識課件
- 英國的社會和文化
- 穩(wěn)定型心絞痛護理查房
- 中試平臺運營管理制度
評論
0/150
提交評論