2024屆貴州省遵義第二教育集團高考沖刺模擬數(shù)學試題含解析_第1頁
2024屆貴州省遵義第二教育集團高考沖刺模擬數(shù)學試題含解析_第2頁
2024屆貴州省遵義第二教育集團高考沖刺模擬數(shù)學試題含解析_第3頁
2024屆貴州省遵義第二教育集團高考沖刺模擬數(shù)學試題含解析_第4頁
2024屆貴州省遵義第二教育集團高考沖刺模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆貴州省遵義第二教育集團高考沖刺模擬數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.52.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.3.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.4.已知向量,,若,則與夾角的余弦值為()A. B. C. D.5.在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值6.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”7.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差8.設(shè),分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.9.雙曲線的漸近線方程為()A. B. C. D.10.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.11.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)的模為()A. B.4 C.2 D.12.設(shè)復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.14.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.15.如圖所示,在直角梯形中,,、分別是、上的點,,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:①平面;②四點、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.16.已知為雙曲線:的左焦點,直線經(jīng)過點,若點,關(guān)于直線對稱,則雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)使得,求實數(shù)的取值范圍.18.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.19.(12分)某商場為改進服務(wù)質(zhì)量,在進場購物的顧客中隨機抽取了人進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:滿意不滿意男女是否有的把握認為顧客購物體驗的滿意度與性別有關(guān)?若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.附表及公式:.20.(12分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項和為,且,若對,恒成立,求正整數(shù)的值.21.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.22.(10分)已知函數(shù),曲線在點處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點,且.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結(jié)合距離公式求解,屬于難題.2、A【解析】

設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.3、B【解析】

根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應(yīng)用,識記真值表,屬基礎(chǔ)題.4、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.5、C【解析】

分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設(shè)平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.6、B【解析】

解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關(guān)系可判斷C、D選項的正誤.綜合可得出結(jié)論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關(guān)系,考查推理能力,屬于基礎(chǔ)題.7、D【解析】

ABD可通過統(tǒng)計圖直接分析得出結(jié)論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應(yīng)為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應(yīng)的方差更大,故錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關(guān)鍵是能通過所給統(tǒng)計圖,分析出對應(yīng)的信息,對學生分析問題的能力有一定要求.8、C【解析】

根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.9、C【解析】

根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.10、A【解析】

將正四面體補成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.11、D【解析】

由復數(shù)的綜合運算求出,再寫出其共軛復數(shù),然后由模的定義計算模.【詳解】,.故選:D.【點睛】本題考查復數(shù)的運算,考查共軛復數(shù)與模的定義,屬于基礎(chǔ)題.12、D【解析】

先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內(nèi)對應(yīng)的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點建立空間直角坐標系:設(shè)正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.14、【解析】

根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結(jié)論.【詳解】由,,設(shè)的中點為,根據(jù)題意,可得,且,解得,,,故.故答案為:.【點睛】本題考查相交弦的性質(zhì),解題的關(guān)鍵在于利用相交弦的性質(zhì),即兩圓的連心線垂直平分相交弦,屬于基礎(chǔ)題.15、①③【解析】

連接、交于點,取的中點,證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質(zhì)定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結(jié)合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設(shè)平面與平面垂直,利用面面垂直的性質(zhì)定理可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對于命題①,連接、交于點,取的中點、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點,為的中點,且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對于命題②,,平面,平面,平面,若四點、、、共面,則這四點可確定平面,則,平面平面,由線面平行的性質(zhì)定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯誤;對于命題③,連接、,設(shè),則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內(nèi)的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對于命題④,假設(shè)平面與平面垂直,過點在平面內(nèi)作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯誤.故答案為:①③.【點睛】本題考查立體幾何綜合問題,涉及線面平行、面面垂直的證明、以及點共面的判斷,考查推理能力,屬于中等題.16、【解析】

由點,關(guān)于直線對稱,得到直線的斜率,再根據(jù)直線過點,可求出直線方程,又,中點在直線上,代入直線的方程,化簡整理,即可求出結(jié)果.【詳解】因為為雙曲線:的左焦點,所以,又點,關(guān)于直線對稱,,所以可得直線的方程為,又,中點在直線上,所以,整理得,又,所以,故,解得,因為,所以.故答案為【點睛】本題主要考查雙曲線的簡單性質(zhì),先由兩點對稱,求出直線斜率,再由焦點坐標求出直線方程,根據(jù)中點在直線上,即可求出結(jié)果,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】

(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關(guān)于的不等式,可求得實數(shù)的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數(shù),絕對值不等式的解法,以及關(guān)于函數(shù)的存在和任意的問題,屬于中檔題.18、(1)(2)的遞減區(qū)間為和【解析】

(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.19、有的把握認為顧客購物體驗的滿意度與性別有關(guān);.【解析】

由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗的滿意度與性別有關(guān);獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有個,其中僅有1人是女顧客的基本事件有個,進而求出獲得紀念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所以,有的把握認為顧客購物體驗的滿意度與性別有關(guān).獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機抽取人,所有基本事件有:,,,,,,,,,,,,,,,共個.其中僅有1人是女顧客的基本事件有:,,,,,,,,共個.所以獲得紀念品的人中僅有人是女顧客的概率.【點睛】本小題主要考查統(tǒng)計案例、卡方分布、概率等基本知識,考查概率統(tǒng)計基本思想以及抽象概括等能力和應(yīng)用意識,屬于中檔題.20、(Ⅰ),;(Ⅱ)1【解析】

(Ⅰ)易得為等比數(shù)列,再利用前項和與通項的關(guān)系求解的通項公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負即可得隨的增大而增大再判定可知即可.【詳解】(Ⅰ)因為,故是以為首項,2為公比的等比數(shù)列,故.又當時,,解得.當時,…①…②①-②有,即.當時也滿足.故為常數(shù)列,所以.即.故,(Ⅱ)因為對,恒成立.故只需求的最小值即可.設(shè),則,又,又當時,時.當時,因為.故.綜上可知.故隨著的增大而增大,故,故【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解通項公式的方法,同時也考查了根據(jù)數(shù)列的增減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論