2024年中考數(shù)學(xué)復(fù)習(xí)(全國版)專題07 分式方程及其應(yīng)用【八大題型】(舉一反三)(解析版)_第1頁
2024年中考數(shù)學(xué)復(fù)習(xí)(全國版)專題07 分式方程及其應(yīng)用【八大題型】(舉一反三)(解析版)_第2頁
2024年中考數(shù)學(xué)復(fù)習(xí)(全國版)專題07 分式方程及其應(yīng)用【八大題型】(舉一反三)(解析版)_第3頁
2024年中考數(shù)學(xué)復(fù)習(xí)(全國版)專題07 分式方程及其應(yīng)用【八大題型】(舉一反三)(解析版)_第4頁
2024年中考數(shù)學(xué)復(fù)習(xí)(全國版)專題07 分式方程及其應(yīng)用【八大題型】(舉一反三)(解析版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題07分式方程及其應(yīng)用【八大題型】TOC\o"1-3"\h\u【題型1由分式方程的解求參數(shù)】 2【題型2解分式方程】 4【題型3由分式方程無解或存在增根求參數(shù)】 4【題型4由分式方程的取值范圍求參數(shù)】 7【題型5由實(shí)際問題抽象出分式方程】 9【題型6分式方程的應(yīng)用與函數(shù)的綜合運(yùn)用】 11【題型7中考最熱考法之以真實(shí)問題情境為背景考查分式方程的實(shí)際應(yīng)用】 17【題型8中考最熱考法之以數(shù)學(xué)文化為背景考查分式方程的實(shí)際應(yīng)用】 21【知識點(diǎn)分式方程及其應(yīng)用】1.定義分母中含有未知數(shù)的方程叫做分式方程。2.分式方程的解法①將分式方程化成整式方程(去分母,即等號兩邊同乘以最簡公分母);②解整式方程(去括號;移項(xiàng);合并同類項(xiàng);系數(shù)化為1或其它解法);③檢驗(yàn):將所得的根代入最簡公分母,若等于零,就是增根,應(yīng)該舍去;若不等于零,就是原方程的根。3.分式方程與實(shí)際問題解有關(guān)分式方程的實(shí)際問題的一般步驟:第1步:審題。認(rèn)真讀題,分析題中各個量之間的關(guān)系。第2步:設(shè)未知數(shù)。根據(jù)題意及各個量的關(guān)系設(shè)未知數(shù)。第3步:列方程。根據(jù)題中各個量的關(guān)系列出方程。第4步:解方程。根據(jù)方程的類型采用相應(yīng)的解法。第5步:檢驗(yàn)。檢驗(yàn)所求得的根是否滿足題意。第6步:答?!绢}型1由分式方程的解求參數(shù)】【例1】(2023·浙江·模擬預(yù)測)已知關(guān)于x的方程2kx+3x?1?7x2?x=4kx的方程恰好有一個實(shí)數(shù)解,求k的值及方程的解.【答案】k=0,x=73或k=94,x=23;k=?14或x=4【分析】去分母,轉(zhuǎn)化為整式方程,根據(jù)整式方程為一元一次方程,即k=0,為一元二次方程,即k≠0,分別求解.而當(dāng)方程為一元二次方程時,又分為Δ=0(方程有等根,滿足方程恰好有一個實(shí)數(shù)解),若Δ>0,則方程有兩不等實(shí)根,且其中一個為增根,而增根只可能為1或【詳解】解:兩邊同乘x2?x,得若k=0,若k≠0,由題意,知Δ=解得k1當(dāng)k1=94時,x1若方程有兩不等實(shí)根,則其中一個為增根,當(dāng)x1=1時,k=2,當(dāng)x1=0時,k=7【點(diǎn)睛】本題考查了分式方程的解,解一元二次方程.關(guān)鍵是將分式方程轉(zhuǎn)化為整式方程,根據(jù)整式方程的特點(diǎn)及題目的條件分類討論.【變式1-1】(2023·山東淄博·統(tǒng)考中考真題)已知x=1是方程m2?x?1x?2=3A.?2 B.2 C.?4 D.4【答案】B【分析】將x=1代入方程,即可求解.【詳解】解:將x=1代入方程,得m解得:m=2故選:B.【點(diǎn)睛】本題考查分式方程的解,解題的關(guān)鍵是將x=1代入原方程中得到關(guān)于m的方程.【變式1-2】(2023·黑龍江·統(tǒng)考中考真題)下列分式方程中,解為x=A.4x?1=1x B.x+1x2【答案】C【分析】根據(jù)方程解的意義,使方程左右兩邊相等的式子值叫方程的解,分別代入判斷即可.【詳解】當(dāng)x=A.4x?1=1x中,左邊B.x+1x2?1C.2x?1+1D.2x+1?1故答案是:C【點(diǎn)睛】本題考查了分式方程的解,解決本題的關(guān)鍵是正確理解分式方程解的意義,做題時要考慮分母是否為0的情況.【變式1-3】(2023·重慶渝中·重慶巴蜀中學(xué)??家荒#┤絷P(guān)于x的不等式組3x+54≤x+32x+12>x+aA.10 B.12 C.16 D.14【答案】B【分析】先求得不等式組中各不等式的解集,根據(jù)不等式組無解可求得a的取值范圍,然后求得分式方程的解,根據(jù)解為整數(shù),且y?2≠0,即可求得滿足條件的所有整數(shù)a的值.【詳解】3x+5解不等式①,得x≤1.解不等式②,得x>a?1.因?yàn)殛P(guān)于x的不等式組3x+54a?1≥1.解得a≥2.解關(guān)于y的分式方程5?ay2?yy=6∵6a?1為整數(shù),a≥2,6∴a=2或a=3或a=7.∴滿足條件的所有整數(shù)a的和=2+3+7=12.故選:B.【點(diǎn)睛】本題主要考查解一元一次不等式組和解分式方程,牢記解一元一次不等式組和解分式方程的步驟是解題的關(guān)鍵.【題型2解分式方程】【例2】(2023·河北·統(tǒng)考中考真題)根據(jù)下表中的數(shù)據(jù),寫出a的值為.b的值為.x結(jié)果代數(shù)式2n3x+17b2x+1a1【答案】52【分析】把x=2代入得2x+1x=a,可求得a的值;把x=n分別代入3x+1=b和【詳解】解:當(dāng)x=n時,3x+1=b,即3n+1=b,當(dāng)x=2時,2x+1x=a,即當(dāng)x=n時,2x+1x=1,即解得n=?1,經(jīng)檢驗(yàn),n=?1是分式方程的解,∴b=3×?1故答案為:52;【點(diǎn)睛】本題考查了求代數(shù)式的值,解分式方程,準(zhǔn)確計算是解題的關(guān)鍵.【變式2-1】(2023·四川·中考真題)關(guān)于x的分式方程2x?1?1【答案】x=?2【分析】把分式方程轉(zhuǎn)化為整式方程即可解決問題.【詳解】解:2兩邊乘x+1x?1得到,2x+2?解得x=?2,檢驗(yàn):把x=?2代入x+1x?1得:?2+1∴x=?2是原方程的解.故答案為:x=?2.【點(diǎn)睛】此題考查解分式方程,解題的關(guān)鍵是熟練掌握解分式方程的步驟,注意解分式方程必須檢驗(yàn).【變式2-2】(2023·西藏·統(tǒng)考中考真題)解分式方程:xx+1【答案】?【分析】方程兩邊同時乘以x+1x?1【詳解】xx+1x?1x?4x=2x=?1經(jīng)檢驗(yàn),x=?1故原方程的解為:x=?1【點(diǎn)睛】本題考查了求解分式方程的知識,掌握相應(yīng)的求解方程,是解答本題的關(guān)鍵.注意:解分式方程時,要將所求的解代入原方程進(jìn)行檢驗(yàn).【變式2-3】(2023·浙江嘉興·統(tǒng)考中考真題)小丁和小迪分別解方程xx?2小?。航猓喝シ帜福脁?(x?3)=x?2去括號,得x?x+3=x?2合并同類項(xiàng),得3=x?2解得x=5∴原方程的解是x=5小迪:解:去分母,得x+(x?3)=1去括號得x+x?3=1合并同類項(xiàng)得2x?3=1解得x=2經(jīng)檢驗(yàn),x=2是方程的增根,原方程無解你認(rèn)為小丁和小迪的解法是否正確?若正確,請?jiān)诳騼?nèi)打“√”;若錯誤,請?jiān)诳騼?nèi)打“×”,并寫出你的解答過程.【答案】都錯誤,見解析【分析】根據(jù)解分式方程的步驟判斷小丁和小迪的解法是否正確,再正確解方程即可.【詳解】小丁和小迪的解法都錯誤;解:去分母,得x+(x?3)=x?2,去括號,得2x?3=x?2,解得,x=1,經(jīng)檢驗(yàn):x=1是方程的解.【點(diǎn)睛】本題考查分式方程的解法,熟練掌握解分式方程的步驟是解題的關(guān)鍵.【題型3由分式方程無解或存在增根求參數(shù)】【例3】(2023·黑龍江·統(tǒng)考中考真題)若分式方程xx?1?mA.1 B.?1 C.2 D.?2【答案】B【分析】先化分式方程為整式方程,令分母x?1=0,代入整式方程計算m的值.【詳解】因?yàn)閤x?1去分母得:x+m=2x?1解得:m=x?2因?yàn)榉质椒匠蘹x?1所以x?1=0,即:x=1是方程增根,所以m=x?2=?1,故選B.【點(diǎn)睛】本題考查了分式方程的增根問題,解題的關(guān)鍵是熟練掌握分式方程中關(guān)于增根的解題方法.【變式3-1】(2023·河北石家莊·校聯(lián)考一模)小華想復(fù)習(xí)分式方程,由于印刷問題,有一個數(shù)“?”看不清楚:?x?2(1)她把這個數(shù)“?”猜成5,請你幫小華解這個分式方程;(2)小華的媽媽說:“我看到標(biāo)準(zhǔn)答案是:方程的增根是x=2,原分式方程無解”,請你求出原分式方程中“?”代表的數(shù)是多少?【答案】(1)x=0;(2)原分式方程中“?”代表的數(shù)是-1.【分析】(1)“?”當(dāng)成5,解分式方程即可,(2)方程有增根是去分母時產(chǎn)生的,故先去分母,再將x=2代入即可解答.【詳解】(1)方程兩邊同時乘以(x?2)得5+3(x?2)=?1解得

x=0經(jīng)檢驗(yàn),x=0是原分式方程的解.(2)設(shè)?為m,方程兩邊同時乘以(x?2)得m+3(x?2)=?1由于x=2是原分式方程的增根,所以把x=2代入上面的等式得m+3(2?2)=?1m=?1所以,原分式方程中“?”代表的數(shù)是-1.【點(diǎn)睛】本題考查了分式方程解法和增根的定義及應(yīng)用.增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.增根確定后可按如下步驟進(jìn)行:①化分式方程為整式方程;②把增根代入整式方程即可求得相關(guān)字母的值.【變式3-2】(2023·黑龍江雞西·校考二模)若關(guān)于x的分式方程1x?2+ax?22?x=1A.a(chǎn)≠32 B.a(chǎn)≠?1 C.a(chǎn)=?1 D.a(chǎn)≠【答案】D【分析】先解分式方程得到?a+1【詳解】解:1去分母得:1?ax?2去括號得:1?ax+2=x?2,移項(xiàng)得:?ax?x=?2?2?1,合并同類項(xiàng)得:?a+1∵關(guān)于x的分式方程1x?2∴a+1≠0x?2≠0∴a+1≠0?2∴a≠32且故選D.【點(diǎn)睛】本題主要考查了分式方程有解的問題,正確解方程得到?a+1【變式3-3】(2023·重慶九龍坡·重慶市育才中學(xué)校聯(lián)考二模)若關(guān)于y的分式方程2y+ay?4+2a4?y=5有解,且關(guān)于x的一元一次不等式組x+3【答案】26【分析】根據(jù)分式方程2y+ay?4+2a4?y=5有解,確定a≠8【詳解】∵解分式方程2y+ay?4解得:y=20?a∵y≠4,∴a≠8,∵x+33≤2+3x6的解集為x≥4;∵x+33∴4<解得6<故a的整數(shù)解為7,8,9,10,∵a≠8,故符合題意a的整數(shù)解為7,9,10,∴7+9+10=26,故答案為:26.【點(diǎn)睛】本題考查了解分式方程,不等式組的整數(shù)解,正確理解題意是解題的關(guān)鍵.【題型4由分式方程的取值范圍求參數(shù)】【例4】(2023·黑龍江牡丹江·統(tǒng)考中考真題)若分式方程ax+2=1?3x+2的解為負(fù)數(shù),則A.a(chǎn)<?1且a≠?2 B.a(chǎn)<0且C.a(chǎn)<?2且a≠?3 D.a(chǎn)<?1且a≠?3【答案】D【分析】直接解分式方程,進(jìn)而得出a的取值范圍,注意分母不能為零.【詳解】解:去分母得:a=x+2?3,解得:x=a+1,∵分式方程ax+2∴a+1<0,x+2≠0,即a+1+2≠0,解得:a<?1且a≠?3,故選:D.【點(diǎn)睛】此題主要考查了分式方程的解,正確解分式方程是解題關(guān)鍵.【變式4-1】(2023·黑龍江雞西·??寄M預(yù)測)若關(guān)于x的分式方程x+mx?2+2m2?x=3A.m<6且m≠1 B.m<3且m≠2 C.m<6 D.m<6且m≠2【答案】D【分析】利用解分式方程的一般步驟解出方程,根據(jù)題意列出不等式,解不等式即可.【詳解】解:x+mx?2方程兩邊同乘(x?2)得,x+m?2m=3x?6,解得,x=6?m∵6?m2∴m≠2,由題意得,6?m2解得,m<6,實(shí)數(shù)m的取值范圍是:m<6且m≠2.故選:D.【點(diǎn)睛】本題考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步驟、分式方程無解的判斷方法是解題的關(guān)鍵.【變式4-2】(2023·河北·統(tǒng)考模擬預(yù)測)已知關(guān)于x的分式方程mx+6=1,對于方程的解,甲、乙兩人有以下說法:甲:當(dāng)m<4時,方程的解是負(fù)數(shù);乙:當(dāng)m>6時,方程的解是正數(shù).下列判斷正確的是(A.只有甲對 B.只有乙對 C.甲、乙都對 D.甲、乙都錯【答案】B【分析】首先解方程表示出分式方程的解,然后根據(jù)參數(shù)的取值范圍求解即可.【詳解】m去分母得,m=x+6,解得x=m?6,要使分式方程有解,x+6≠0,∴m?6+6≠0,∴m≠0,∴當(dāng)m<4時,m?6<4?6,∴x<?2,∴當(dāng)m<4,且m≠0時,方程的解是負(fù)數(shù),故甲說法錯誤;當(dāng)m>6時,m?6>6?6,∴x>0,∴乙說法正確.故選:B.【點(diǎn)睛】本題考查分式方程含參數(shù)問題,解題的關(guān)鍵是熟練掌握分式方程的增根的定義:使分式方程的最簡公分母等于0的根叫做分式方程的增根.【變式4-3】(2023·重慶·統(tǒng)考中考真題)若關(guān)于x的不等式組x+23>x2+14x+a<x?1的解集為x<?2,且關(guān)于y的分式方程【答案】13【分析】先求出一元一次不等式組中兩個不等式的解集,從而可得a≤5,再解分式方程可得a>?2且a≠1,從而可得?2<a≤5且a≠1,然后將所有滿足條件的整數(shù)a的值相加即可得.【詳解】解:x+23解不等式①得:x<?2,解不等式②得:x<?a+1∵關(guān)于x的不等式組x+23>x∴?a+1解得a≤5,方程a+2y?1+y+2解得y=a+2∵關(guān)于y的分式方程a+2y?1∴a+23>0解得a>?2且a≠1,∴?2<a≤5且a≠1,則所有滿足條件的整數(shù)a的值之和為?1+0+2+3+4+5=13,故答案為:13.【點(diǎn)睛】本題考查了一元一次不等式組、分式方程,熟練掌握不等式組和分式方程的解法是解題關(guān)鍵.【題型5由實(shí)際問題抽象出分式方程】【例5】(2023·四川內(nèi)江·統(tǒng)考中考真題)用計算機(jī)處理數(shù)據(jù),為了防止數(shù)據(jù)輸入出錯,某研究室安排兩名程序操作員各輸入一遍,比較兩人的輸入是否一致,本次操作需輸入2640個數(shù)據(jù),已知甲的輸入速度是乙的2倍,結(jié)果甲比乙少用2小時輸完.這兩名操作員每分鐘各能輸入多少個數(shù)據(jù)?設(shè)乙每分鐘能輸入x個數(shù)據(jù),根據(jù)題意得方程正確的是()A.26402x=2640C.26402x=2640【答案】D【分析】設(shè)乙每分鐘能輸入x個數(shù)據(jù),則甲每分鐘能輸入2x個數(shù)據(jù),根據(jù)“甲比乙少用2小時輸完”列出分式方程即可.【詳解】解:設(shè)乙每分鐘能輸入x個數(shù)據(jù),則甲每分鐘能輸入2x個數(shù)據(jù),由題意得26402x故選:D.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,找準(zhǔn)等量關(guān)系,正確列出分式方程是解題的關(guān)鍵.【變式5-1】(2023·廣東廣州·統(tǒng)考中考真題)隨著城際交通的快速發(fā)展,某次動車平均提速60kmh,動車提速后行駛480km與提速前行駛360km所用的時間相同.設(shè)動車提速后的平均速度為xkmh,則下列方程正確的是(A.360x=480x+60 B.360x?60=【答案】B【分析】根據(jù)提速前后所用時間相等列式即可.【詳解】解:根據(jù)題意,得360x?60故選:B.【點(diǎn)睛】本題考查了列分式方程,找準(zhǔn)等量關(guān)系是解題關(guān)鍵.【變式5-2】(2023·湖北十堰·統(tǒng)考中考真題)為了落實(shí)“雙減”政策,進(jìn)一步豐富文體活動,學(xué)校準(zhǔn)備購進(jìn)一批籃球和足球,已知每個籃球的價格比每個足球的價格多20元,用1500元購進(jìn)籃球的數(shù)量比用800元購進(jìn)足球的數(shù)量多5個,如果設(shè)每個足球的價格為x元,那么可列方程為(

)A.1500x+20?800x=5 B.1500x?20【答案】A【分析】設(shè)每個足球的價格為x元,則籃球的價格為x+【詳解】解:設(shè)每個足球的價格為x元,則籃球的價格為x+由題意可得:1500x+20故選:A.【點(diǎn)睛】本題考查分式方程的應(yīng)用,正確理解題意是關(guān)鍵.【變式5-3】(2023·黑龍江綏化·統(tǒng)考中考真題)某運(yùn)輸公司,運(yùn)送一批貨物,甲車每天運(yùn)送貨物總量的14.在甲車運(yùn)送1天貨物后,公司增派乙車運(yùn)送貨物,兩車又共同運(yùn)送貨物12天,運(yùn)完全部貨物.求乙車單獨(dú)運(yùn)送這批貨物需多少天?設(shè)乙車單獨(dú)運(yùn)送這批貨物需x天,由題意列方程,正確的是(A.14+1C.141+1【答案】B【分析】設(shè)乙車單獨(dú)運(yùn)送這批貨物需x天,由題意列出分式方程即可求解.【詳解】解:設(shè)乙車單獨(dú)運(yùn)送這批貨物需x天,由題意列方程14故選:B.【點(diǎn)睛】本題考查了列分式方程,根據(jù)題意找到等量關(guān)系列出方程是解題的關(guān)鍵.【題型6分式方程的應(yīng)用與函數(shù)的綜合運(yùn)用】【例6】(2023·湖北武漢·統(tǒng)考中考真題)我國古代數(shù)學(xué)經(jīng)典著作《九章算術(shù)》記載:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,問幾何步及之?”如圖是善行者與不善行者行走路程s(單位:步)關(guān)于善行者的行走時間t的函數(shù)圖象,則兩圖象交點(diǎn)P的縱坐標(biāo)是.

【答案】250【分析】設(shè)圖象交點(diǎn)P的縱坐標(biāo)是m,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的35【詳解】解:設(shè)圖象交點(diǎn)P的縱坐標(biāo)是m,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的35∴m?100m解得m=250,經(jīng)檢驗(yàn)m=250是方程的根且符合題意,∴兩圖象交點(diǎn)P的縱坐標(biāo)是250.故答案為:250【點(diǎn)睛】此題考查了從函數(shù)圖象獲取信息、列分式方程解決實(shí)際問題,數(shù)形結(jié)合和準(zhǔn)確計算是解題的關(guān)鍵.【變式6-1】(2023·廣東深圳·校聯(lián)考模擬預(yù)測)按要求解答(1)某市計劃修建一條隧道,已知隧道全長2400米,一工程隊(duì)在修了1400米后,加快了工作進(jìn)度,每天比原計劃多修5米,結(jié)果提前10天完成,求原計劃每天修多長?(2)隧道建成后的截面圖如圖所示,它可以抽象成如圖所示的拋物線.已知兩個車道寬度OC=OD=4米,人行道地基AC,BD寬均為2米,拱高OM=10.8米.建立如圖所示的直角坐標(biāo)系.①此拋物線的函數(shù)表達(dá)式為________.(函數(shù)表達(dá)式用一般式表示)②按規(guī)定,車頂部與隧道頂部在豎直方向上的高度差至少0.5米,則此隧道限高_(dá)_______米.③已知人行道臺階CE,+【答案】(1)原計劃每天修20米(2)①y=?0.3x【分析】(1)設(shè)原計劃每天修x米,然后根據(jù)題意列分式方程求解即可;(2)①由題意可得E?4,0,F4,0,A?6,0,B6,0,M0,10.8,然后運(yùn)用待定系數(shù)法解答即可;②車的寬度為4米,令x=4時求得y=6,然后再減去0.5即可解答;③如圖:由CE,DF【詳解】(1)解:設(shè)原計劃每天修x米則根據(jù)題意可得:2400解得:x=?25或x=20經(jīng)檢驗(yàn),x=20是分式方程的解.答:原計劃每天修20米.(2)解:①根據(jù)題意可得:C設(shè)拋物線的函數(shù)表達(dá)式為y=a由題意可得:0=36a?6b+c0=36a+6b+c10.8=c所以拋物線的函數(shù)表達(dá)式為y=?0.3②∵車的寬度為4米,車從正中通過,∴令x=4時,y=?0.3×16+10.8=6,∴貨車安全行駛裝貨的最大高度為6?0.5=5.5(米).③如圖:由CE,DF高均為0.3米,則點(diǎn)令y=0.3,則有:0.3=?0.3x2+10.8∴人行道臺階的寬度為:FG=∴人行道寬度設(shè)計達(dá)標(biāo).【點(diǎn)睛】本題主要考查了二次函數(shù)的應(yīng)用、待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)圖像上點(diǎn)的坐標(biāo)特征等知識點(diǎn),正確求得函數(shù)解析式是解答本題的關(guān)鍵.【變式6-2】(2023·內(nèi)蒙古·統(tǒng)考中考真題)端午節(jié)吃粽子是中華民族的傳統(tǒng)習(xí)俗.市場上豆沙粽禮盒的進(jìn)價比肉粽禮盒的進(jìn)價每盒便宜10元,某商家用2500元購進(jìn)的肉粽和用2000元購進(jìn)的豆沙粽盒數(shù)相同.

(1)求每盒肉粽和每盒豆沙粽的進(jìn)價;(2)商家計劃只購買豆沙粽禮盒銷售,經(jīng)調(diào)查了解到有A,B兩個廠家可供選擇,兩個廠家針對價格相同的豆沙粽禮盒給出了不同的優(yōu)惠方案:A廠家:一律打8折出售.B廠家:若一次性購買禮盒數(shù)量超過25盒,超過的部分打7折.該商家計劃購買豆沙粽禮盒x盒,設(shè)去A廠家購買應(yīng)付y1元,去B廠家購買應(yīng)付y①分別求出y1,y2與②若該商家只在一個廠家購買,怎樣買劃算?【答案】(1)每盒肉粽和每盒豆沙粽的進(jìn)價分別為50元和40元(2)①y1=32x(x≥0且x為整數(shù));y2=40x0≤x≤25且x為整數(shù)【分析】(1)設(shè)每盒豆沙粽的進(jìn)價為a元,則每盒肉粽的進(jìn)價為a+10元,列分式方程求解即可;(2)①根據(jù)售價與數(shù)量、單價間的關(guān)系即可列一次函數(shù)得解;②由y1=y2得【詳解】(1)解:設(shè)每盒豆沙粽的進(jìn)價為a元,則每盒肉粽的進(jìn)價為a+10元2000方程兩邊乘aa+10,得解得a=40檢驗(yàn):當(dāng)a=40時,a∴a=40是原方程的解a+10=50答:每盒肉粽和每盒豆沙粽的進(jìn)價分別為50元和40元.(2)解:①y1=40×80%x=32x(當(dāng)0≤x≤25且x為整數(shù)時,y當(dāng)x>25且x為整數(shù)時,y∴y②當(dāng)x>25且x為整數(shù),y1=x=75由圖象可知:購買粽子禮盒少于75盒,去A廠家購買劃算;購買粽子禮盒等于75盒,去A廠家或B廠家購買一樣劃算;購買粽子禮盒多于75盒,去B廠家購買劃算.【點(diǎn)睛】本題考查了求一次函數(shù)得解析式,分式方程的應(yīng)用以及一次函數(shù)的圖像及性質(zhì),正確找出等量關(guān)系列分式方程是解題的關(guān)鍵.【變式6-3】(2023·四川涼山·統(tǒng)考一模)某班家委會討論決定購買A,B兩種型號的口罩供班級學(xué)生使用,已知A型口罩每包價格a元,B型口罩每包價格比A型少4元,180元錢購買的A型口罩比B型口罩少12包.

(1)求a的值.(2)經(jīng)與商家協(xié)商,購買A型口罩價格可以優(yōu)惠,其中每包價格y(元)和購買數(shù)量x(包)的函數(shù)關(guān)系如圖所示,B型口罩一律按原價銷售.①求y關(guān)于x的函數(shù)解析式;②若家委會計劃購買A型、B型共計100包,其中A型不少于30包,且不超過60包.問購買A型口罩多少包時,購買口罩的總金額最少,最少為多少元?【答案】(1)10(2)①y=100<x≤30?0.1x+13【分析】(1)根據(jù)題意,可以得到相應(yīng)的分式方程,從而可以得到a的值;(2)①根據(jù)函數(shù)圖象中的數(shù)據(jù),可以得到y(tǒng)關(guān)于x的函數(shù)解析式;②根據(jù)題意和①中的結(jié)果,可以得到購買A型口罩多少包時,購買口罩的總金額最少,最少為多少元.【詳解】(1)解:由題意可得,180a?4解得,a1經(jīng)檢驗(yàn),a1但a2∴a=10.(2)解:①由圖象可得,當(dāng)0<x≤30時,y=10,當(dāng)30<x≤50時,設(shè)y=kx+b,代入30,1030k+b=1050k+b=8,得k=?0.1即當(dāng)30<x≤50時,y=?0.1x+13,當(dāng)x>50時,y=8,由上可得,y與x的函數(shù)關(guān)系式為y=10②設(shè)購買A型口罩x包,則購買B型口罩100?x包,購買的總金額為W元,當(dāng)30≤x≤50時,W=x=?0.1x?35∴當(dāng)x=50時,W取得最小值,此時W=700,當(dāng)50<x≤60時,W=8x+6(∵k=2>0,∴W隨著x的增大而增大,∴700<W≤720,由上可得,購買口罩的最小金額為700元,答:購買A型口罩50包時,購買口罩的總金額最少,最少為700元.【點(diǎn)睛】本題考查分式方程的應(yīng)用,二次函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)和二次函數(shù)的性質(zhì)解答.【題型7中考最熱考法之以真實(shí)問題情境為背景考查分式方程的實(shí)際應(yīng)用】【例7】(2023·河南南陽·統(tǒng)考一模)2023春節(jié)檔電影《滿江紅》熱映,進(jìn)一步激發(fā)觀眾愛國之情.帝都南陽與名將岳飛有著一段傳頌至今的歷史——公元1138年,岳飛統(tǒng)軍過南陽到武侯祠敬拜諸葛亮,雨夜含淚手書前后《出師表》,為南陽留下了千古絕唱“三絕碑”.某超市采購了兩批同樣的《出師表》紀(jì)念品掛件,第一批花了3300元,第二批花了4000元,已知第一批每個掛件的進(jìn)價是第二批的1.1倍,且第二批比第一批多購進(jìn)25個.(1)求第二批每個掛件的進(jìn)價;(2)兩批掛件售完后,該超市以第二批每個掛件的進(jìn)價又采購一批同樣的掛件,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)售價為每個60元時,每周能賣出40個,若每降價1元,每周多賣10個,由于貨源緊缺,每周最多能賣90個,求每個掛件售價定為多少元時,每周可獲得最大利潤,最大利潤是多少?【答案】(1)40元(2)售價定為55元時,最大利潤是1350元【分析】(1)設(shè)第二批每個掛件的進(jìn)價為x元,則第一批每個掛件的進(jìn)價為1.1x元,根據(jù)題意列出方程,求解即可;(2)設(shè)每個售價定為m元,每周所獲利潤為W元,則可列出W關(guān)于m的函數(shù)關(guān)系式,再根據(jù)“每周最多能賣90個”得出m的取值范圍,根據(jù)二次函數(shù)的性質(zhì)可得出結(jié)論.【詳解】(1)解答:解:(1)設(shè)第二批每個掛件進(jìn)價是每個x元,根據(jù)題意得33001.1x解得x=40,經(jīng)檢驗(yàn),x=40是原方程的解,也符合題意,∴x=40,答:第二批每個掛件進(jìn)價是每個40元;(2)設(shè)每個掛件售價定為m元,每周可獲得利潤W元,∵每周最多能賣90個,∴40+10×60?m解得m≥55,根據(jù)題意得W=(m?40)(40+10×60?m∵?10>0,∴當(dāng)m≥52時,y隨x的增大而減小,∵m≥55,∴當(dāng)m=55時,W取最大,此時W=?10×(55?52)∴當(dāng)每個掛件售價定為55元時,每周可獲得最大利潤,最大利潤是1350元.【點(diǎn)睛】本題綜合考查分式方程和二次函數(shù)的應(yīng)用,根據(jù)題意列出函數(shù)關(guān)系式是解題關(guān)鍵.【變式7-1】(2023·山西呂梁·統(tǒng)考一模)隨著新能源汽車的普及,我國新能源汽車的保有量已經(jīng)處于世界第一,解決汽車快速充電技術(shù)已經(jīng)成為新能源汽車發(fā)展的主要研究方向,從2023年開始,4C甚至6C的快速充電方案已經(jīng)開始逐步落地.據(jù)測試數(shù)據(jù)顯示,使用6C充電技術(shù),每分鐘充電量的續(xù)航里程(汽車所能行駛的路程)比采用4C技術(shù)提高了50%,若采用6C充電技術(shù),續(xù)航里程480公里的充電時間,比采用4C充電技術(shù)續(xù)航里程400公里的充電時間節(jié)省2分鐘,求采用6C充電技術(shù),每分鐘充電量的續(xù)航里程為多少公里?【答案】60公里【分析】設(shè)采用4C充電技術(shù),每分鐘充電量的續(xù)航里程為x公里,則采用6C充電技術(shù)的續(xù)航里程為1+50%【詳解】解:設(shè)采用4C充電技術(shù),每分鐘充電量的續(xù)航里程為x公里,則采用6C充電技術(shù)的續(xù)航里程為1+50%根據(jù)題意,得4801+50解得:x=40,經(jīng)檢驗(yàn),x=40是原分式方程的解,當(dāng)x=40時,1+50%答:采用6C充電技術(shù),每分鐘充電量的續(xù)航里程為60公里.【點(diǎn)睛】本題考查了分式方程的實(shí)際應(yīng)用,正確理解題意,找到等量關(guān)系,列出分式方程是解題的關(guān)鍵.【變式7-2】(2023·云南昭通·統(tǒng)考一模)瑞兔迎春,福滿萬家吉祥物“兔圓圓”拉開2023央視總臺兔年春晚的帷幕.豎直的耳朵、微昂的腦袋、挺起的胸脯等設(shè)計巧思,彰顯出奮進(jìn)向上的精氣神,某商店用1500元購進(jìn)了一批“兔圓圓”玩具,過了一段時間,又用3500元購進(jìn)一批“兔圓圓”玩具,所購數(shù)量是第一次購進(jìn)數(shù)量的2倍,但每個“兔圓圓”玩具的價格比第一次購進(jìn)的價格貴了5元.(1)商店第一次購進(jìn)“兔圓圓”玩具多少個?(2)若該商店兩次購進(jìn)的“兔圓圓”玩具按相同的標(biāo)價銷售,全部售完后利潤不低于1150元,則每個“兔圓圓”玩具的標(biāo)價至少是多少元?【答案】(1)50個(2)41元【分析】(1)設(shè)商店第一次購進(jìn)“兔圓圓”玩具x個,則第二次購進(jìn)2x個,然后根據(jù)每個“兔圓圓”玩具的價格比第一次購進(jìn)的價格貴了5元列出方程進(jìn)行求解即可;(2)設(shè)每個“兔圓圓”玩具的標(biāo)價為m元,先求出兩次一共購進(jìn)“兔圓圓”玩具的個數(shù),然后根據(jù)利潤=售價×銷售量?成本列出不等式進(jìn)行求解即可.【詳解】(1)解:設(shè)商店第一次購進(jìn)“兔圓圓”玩具x個,則第二次購進(jìn)2x個,根據(jù)題意,得1500x解得x=50,經(jīng)檢驗(yàn),x=50是原方程的根,且符合題意,答:商店第一次購進(jìn)“兔圓圓”玩具50個;(2)解:設(shè)每個“兔圓圓”玩具的標(biāo)價為m元,50+50×2=150(個),根據(jù)題意,得150m?1500?3500≥1150,解得m≥41,∴每個“兔圓圓”玩具的標(biāo)價至少為41元.【點(diǎn)睛】本題主要考查了分式方程的實(shí)際應(yīng)用,一元一次不等式的實(shí)際應(yīng)用,正確理解題意找到等量關(guān)系和不等關(guān)系是解題的關(guān)鍵.【變式7-3】(2023·河南安陽·統(tǒng)考一模)京東發(fā)布的《2023春節(jié)假期消費(fèi)趨勢》顯示:消費(fèi)者春節(jié)期間購物品類更加多元,也在節(jié)日之外更“日常化”,其中預(yù)制菜成交額同比增長超6倍.春節(jié)期間,某超市分別用2000元和1600元購進(jìn)A,B兩類同等數(shù)量的預(yù)制菜禮盒,已知B類預(yù)制菜禮盒每盒進(jìn)價比A類預(yù)制菜禮盒每盒便宜20元,A,B兩類預(yù)制菜禮盒每盒的售價分別是130元和120元.(1)求A,B兩類預(yù)制菜禮盒的進(jìn)價各是多少元;(2)第一次進(jìn)的貨很快銷售一空,該超市決定第二次購進(jìn)A,B兩類預(yù)制菜禮盒共30盒,且購進(jìn)的A類預(yù)制菜禮盒數(shù)量不少于B類預(yù)制菜禮盒數(shù)量的2倍,該超市第二次如何進(jìn)貨才能在銷售完該次所進(jìn)預(yù)制菜禮盒后,獲得最大利潤?并求出最大利潤(此處指銷售第二次所進(jìn)預(yù)制菜禮盒的利潤).【答案】(1)A,B兩類預(yù)制菜禮盒的進(jìn)價各是100元和80元;(2)購進(jìn)A類預(yù)制菜禮盒20盒,則購進(jìn)B類預(yù)制菜禮盒10盒,所獲利潤最大,最大利潤為1000元.【分析】(1)設(shè)每盒A類預(yù)制菜禮盒的進(jìn)價是x元,則每盒B類預(yù)制菜禮盒的進(jìn)價是x?20元,根據(jù)數(shù)量=總價÷單價,結(jié)合用2000元和1600元購進(jìn)A,B兩類同等數(shù)量的預(yù)制菜禮盒,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;(2)設(shè)購進(jìn)A類預(yù)制菜禮盒m盒,總利潤為w元,根據(jù)購進(jìn)的A類預(yù)制菜禮盒數(shù)量不少于B類預(yù)制菜禮盒數(shù)量的2倍,求出m的取值范圍,再表示出w與m的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的增減性即可確定最大利潤時進(jìn)貨方案,進(jìn)一步求出最大利潤即可.【詳解】(1)解:設(shè)每盒A類禮盒的進(jìn)價是x元,則每盒B類禮盒的進(jìn)價是x?20元,依題意得:2000x解得x=100,經(jīng)檢驗(yàn),x=100是原方程的解,且符合題意,∴x?20=80,答:A,B兩類預(yù)制菜禮盒的進(jìn)價各是100元和80元;(2)解:設(shè)購進(jìn)A類預(yù)制菜禮盒m盒,則購進(jìn)B類預(yù)制菜禮盒30?m盒,總利潤為w元,根據(jù)題意得m≥230?m解得m≥20,w=130?100∵?10<0,∴w隨著m的增大而減少,當(dāng)m=20時,w取得最大值,最大值為1000元,30?20=10(盒),答:購進(jìn)A類預(yù)制菜禮盒20盒,則購進(jìn)B類預(yù)制菜禮盒10盒,所獲利潤最大,最大利潤為1000元.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,分式方程的應(yīng)用,一元一次不等式的應(yīng)用,解題關(guān)鍵是根據(jù)題意列出方程或不等式或函數(shù)解析式去求解.【題型8中考最熱考法之以數(shù)學(xué)文化為背景考查分式方程的實(shí)際應(yīng)用】【例8】(2023·安徽·校聯(lián)考三模)我國古代著作《四元玉鑒》記載“買椽多少”問題:“六貫二百一十錢,倩人去買幾株椽.每株腳錢三文足,無錢準(zhǔn)與一株椽.”其大意為:現(xiàn)請人代買一批椽,這批椽的價錢為6210文.如果每株椽的運(yùn)費(fèi)是3文,那么少拿一株椽后,剩下的椽的運(yùn)費(fèi)恰好等于一株椽的價錢,試問6210文能買多少株椽?【答案】46株【分析】根據(jù)單價=總價÷數(shù)量結(jié)合少拿一株椽后剩下的椽的運(yùn)費(fèi)恰好等于一株椽的價錢,即可得出關(guān)于x的分式方程,解之即可.【詳解】解:設(shè)6210文能買x株椽,依題意,得:3x?1解得:x=46或x=-45(舍),經(jīng)檢驗(yàn):x=46是原方程的解,∴6210文能買46株椽.【點(diǎn)睛】本題考查了分式方程的實(shí)際應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出分式方程是解題的關(guān)鍵.【變式8-1】(2023·江西萍鄉(xiāng)·??寄M預(yù)測)《九章算術(shù)》是我國古代著名的數(shù)學(xué)專著之一.它

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論