浙江省臺州市椒江區(qū)第一中學2024屆數(shù)學高一下期末聯(lián)考試題含解析_第1頁
浙江省臺州市椒江區(qū)第一中學2024屆數(shù)學高一下期末聯(lián)考試題含解析_第2頁
浙江省臺州市椒江區(qū)第一中學2024屆數(shù)學高一下期末聯(lián)考試題含解析_第3頁
浙江省臺州市椒江區(qū)第一中學2024屆數(shù)學高一下期末聯(lián)考試題含解析_第4頁
浙江省臺州市椒江區(qū)第一中學2024屆數(shù)學高一下期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省臺州市椒江區(qū)第一中學2024屆數(shù)學高一下期末聯(lián)考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設x、y滿足約束條件,則z=2x﹣y的最大值為()A.0 B.0.5 C.1 D.22.某人打靶時連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.兩次都中靶D.兩次都不中靶3.下列四個函數(shù)中,以為最小正周期,且在區(qū)間上為減函數(shù)的是()A. B. C. D.4.中,角所對的邊分別為,已知向量,,且共線,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形5.在等差數(shù)列中,,則()A.5 B.8 C.10 D.146.若,則與夾角的余弦值為()A. B. C. D.17.如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計眾數(shù)與中位數(shù)分別是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;138.在四邊形ABCD中,若,則四邊形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四邊形9.計算:的結果為()A.1 B.2 C.-1 D.-210.已知,,,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)12.已知等差數(shù)列,的前項和分別為,,若,則______.13.如圖所示,梯形中,,于,,分別是,的中點,將四邊形沿折起(不與平面重合),以下結論①面;②;③.則不論折至何位置都有_______.14.若函數(shù)圖象各點的橫坐標縮短為原來的一半,再向左平移個單位,得到的函數(shù)圖象離原點最近的的對稱中心是______.15.已知直線l過點P(-2,5),且斜率為-,則直線l的方程為________.16.若角的終邊經(jīng)過點,則的值為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)求的坐標;(2)求.18.如圖,飛機的航線和山頂在同一個鉛垂平面內,已知飛機的高度為海拔,速度為,飛行員在處先看到山頂?shù)母┙菫?8°30′,經(jīng)過后又在處看到山頂?shù)母┙菫?1°(1)求飛機在處與山頂?shù)木嚯x(精確到);(2)求山頂?shù)暮0胃叨龋ň_到)參考數(shù)據(jù):,19.已知數(shù)列的前項和為,點在直線上.(1)求數(shù)列的通項公式;(2)設,若數(shù)列的前項和為,求證:.20.在中,角的對邊分別為.已知(1)若,,求的面積;(2)若的面積為,且,求的值.21.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【題目詳解】由約束條件作出可行域如圖,聯(lián)立,解得A(2,3),化目標函數(shù)z=2x﹣y為y=2x﹣z,由圖可知,當直線y=2x﹣z過A時,直線在y軸上的截距最小,z有最大值為2×2﹣3=1.故選:C.【點評】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是中檔題.2、D【解題分析】

根據(jù)互斥事件的定義逐個分析即可.【題目詳解】“至少有一次中靶”與“至多有一次中靶”均包含中靶一次的情況.故A錯誤.“至少有一次中靶”與“只有一次中靶”均包含中靶一次的情況.故B錯誤.“至少有一次中靶”與“兩次都中靶”均包含中靶兩次的情況.故C錯誤.根據(jù)互斥事件的定義可得,事件“至少有一次中靶”的互斥事件是“兩次都不中靶”.故選:D【題目點撥】本題主要考查了互斥事件的辨析,屬于基礎題型.3、B【解題分析】

分別求出四個選項中函數(shù)的周期,排除選項后,再通過函數(shù)的單調減區(qū)間找出正確選項即可.【題目詳解】由題意觀察選項,C的周期不是,所以C不正確;對于A,,函數(shù)的周期為,但在區(qū)間上為增函數(shù),故A不正確;對于B,,函數(shù)的周期為,且在區(qū)間上為減函數(shù),故B正確;對于D,,函數(shù)的周期為,但在區(qū)間上為增函數(shù),故D不正確;故選:B【題目點撥】本題主要考查三角函數(shù)的性質,需熟記正弦、余弦、正切、余切的性質,屬于基礎題.4、D【解題分析】

由向量共線的坐標表示得一等式,然后由正弦定理化邊為角,利用誘導公式得展開后代入原式化簡得,分類討論得解.【題目詳解】∵共線,∴,即,,,整理得,所以或,或或(舍去).∴三角形為直角三角形或等腰三角形.故選:D.【題目點撥】本題考查三角形形狀的判斷,考查向量共線的坐標表示,考查正弦定理,兩角和的正弦公式,考查三角函數(shù)性質.解題時不能隨便約分漏解.5、B【解題分析】試題分析:設等差數(shù)列的公差為,由題設知,,所以,所以,故選B.考點:等差數(shù)列通項公式.6、A【解題分析】

根據(jù)向量的夾角公式,準確運算,即可求解,得到答案.【題目詳解】由向量,則與夾角的余弦值為,故選A.【題目點撥】本題主要考查了向量的夾角公式的應用,其中解答中熟記向量的夾角公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、D【解題分析】分析:根據(jù)頻率分布直方圖中眾數(shù)與中位數(shù)的定義和計算方法,即可求解頻率分布直方圖的眾數(shù)與中位數(shù)的值.詳解:由題意,頻率分布直方圖中最高矩形的底邊的中點的橫坐標為數(shù)據(jù)的眾數(shù),所以中間一個矩形最該,故數(shù)據(jù)的眾數(shù)為,而中位數(shù)是把頻率分布直方圖分成兩個面積相等部分的平行于軸的直線橫坐標,第一個矩形的面積為,第二個矩形的面積為,故將第二個矩形分成即可,所以中位數(shù)是,故選D.點睛:本題主要考查了頻率分布直方圖的中位數(shù)與眾數(shù)的求解,其中頻率分布直方圖中小矩形的面積等于對應的概率,且各個小矩形的面積之和為1是解答的關鍵,著重考查了推理與計算能力.8、D【解題分析】試題分析:因為,根據(jù)向量的三角形法則,有,則可知,故四邊形ABCD為平行四邊形.考點:向量的三角形法則與向量的平行四邊形法則.9、B【解題分析】

利用恒等變換公式化簡得的答案.【題目詳解】故答案選B【題目點撥】本題考查了三角恒等變換,意在考查學生的計算能力.10、C【解題分析】

分別求出的值再帶入即可.【題目詳解】因為,所以因為,所以所以【題目點撥】本題考查兩角差的余弦公式.屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③④⑤【解題分析】

設出幾何體的邊長,根據(jù)正六邊形的性質,線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關知識,對五個結論逐一分析,由此得出正確結論的序號.【題目詳解】設正六邊形長為,則.根據(jù)正六邊形的幾何性質可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【題目點撥】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.12、【解題分析】

利用等差數(shù)列的性質以及等差數(shù)列奇數(shù)項之和與中間項的關系進行化簡求解.【題目詳解】因為是等差數(shù)列,所以,又因為為等差數(shù)列,所以,故.【題目點撥】(1)在等差數(shù)列中,若,則有;(2)在等差數(shù)列.13、①②【解題分析】

根據(jù)題意作出折起后的幾何圖形,再根據(jù)線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識即可判斷各選項的真假.【題目詳解】作出折起后的幾何圖形,如圖所示:.因為,分別是,的中點,所以是的中位線,所以.而面,所以面,①正確;無論怎樣折起,始終有,所以面,即有,而,所以,②正確;折起后,面,面,且,故與是異面直線,③錯誤.故答案為:①②.【題目點撥】本題主要考查線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識的應用,意在考查學生的直觀想象能力和邏輯推理能力,屬于基礎題.14、【解題分析】

由二倍角公式化簡函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結合正弦函數(shù)性質得對稱中心.【題目詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對值最小的是,因此所求對稱中心為.故答案為:.【題目點撥】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質,考查二倍角公式,掌握正弦函數(shù)性質是解題關鍵.15、3x+4y-14=0【解題分析】由y-5=-(x+2),得3x+4y-14=0.16、.【解題分析】

根據(jù)三角函數(shù)的定義求出的值,然后利用反三角函數(shù)的定義得出的值.【題目詳解】由三角函數(shù)的定義可得,,故答案為.【題目點撥】本題考查三角函數(shù)的定義以及反三角函數(shù)的定義,解本題的關鍵就是利用三角函數(shù)的定義求出的值,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)根據(jù)向量的數(shù)乘運算及加法運算即可得到本題答案;(2)根據(jù)向量的模的計算公式即可得到本題答案.【題目詳解】(1)因為,,所以;所以;(2)因為,所以.【題目點撥】本題主要考查平面向量的線性運算以及模的計算,屬基礎題.18、(1)14981m(2)【解題分析】

(1)先求出飛機在150秒內飛行的距離,然后由正弦定理可得;(2)飛機,山頂?shù)暮0蔚牟顬?,則山頂?shù)暮0胃叨葹椋绢}目詳解】解:(1)飛機在150秒內飛行的距離為,在中,由正弦定理,有,∴;(2)飛機,山頂?shù)暮0蔚牟顬?,,即山頂?shù)暮0胃叨葹椋绢}目點撥】本題主要考查正弦定理的應用,考查了計算能力,屬于中檔題.19、(1)(2)見解析【解題分析】

(1)先利用時,由求出的值,再令,由,得出,將兩式相減得出數(shù)列為等比數(shù)列,得出該數(shù)列的公比,可求出;(2)利用對數(shù)的運算性質以及等差數(shù)列的求和公式得出,并將裂項為,利用裂項法求出,于此可證明出所證不等式成立.【題目詳解】(1)由題可得.當時,,即.由題設,,兩式相減得.所以是以2為首項,2為公比的等比數(shù)列,故.(2),則,所以因為,所以,即證.【題目點撥】本題考查利用求通項,以及裂項法求和,利用求通項的原則是,另外在利用裂項法求和時要注意裂項法求和法所適用數(shù)列通項的基本類型,熟悉裂項法求和的基本步驟,都是??碱}型,屬于中等題.20、(1);(2).【解題分析】

(1)先根據(jù)計算出與,再利用余弦定理求出b邊,最后利用求出答案;(2)利用正弦定理將等式化為變得關系,再利用余弦定理化為與的關系式,再結合面積求出c的值.【題目詳解】解:(1)因為,所以.又,所以.因為,,且,所以,解得,所以.(2)因為,由正弦定理,得.又,所以.又,得,所以,所以.【題目點撥】本題考查正余弦定理解三角形,屬于基礎題.21、(1)(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論