2024屆廣西桂林市龍勝中學高一數(shù)學第一學期期末考試試題含解析_第1頁
2024屆廣西桂林市龍勝中學高一數(shù)學第一學期期末考試試題含解析_第2頁
2024屆廣西桂林市龍勝中學高一數(shù)學第一學期期末考試試題含解析_第3頁
2024屆廣西桂林市龍勝中學高一數(shù)學第一學期期末考試試題含解析_第4頁
2024屆廣西桂林市龍勝中學高一數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣西桂林市龍勝中學高一數(shù)學第一學期期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.設,,,則A. B.C. D.2.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c3.已知直線過,兩點,則直線的斜率為A. B.C. D.4.已知是上的奇函數(shù),且當時,,則當時,()A. B.C. D.5.符號函數(shù)是一個很有用的函數(shù),符號函數(shù)能夠把函數(shù)的符號析離出來,其表達式為若定義在上的奇函數(shù),當時,,則的圖象是()A. B.C. D.6.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.7.設,表示兩個不同平面,表示一條直線,下列命題正確的是()A.若,,則.B.若,,則.C.若,,則.D.若,,則.8.已知,,則“使得”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件9.如圖是函數(shù)在一個周期內(nèi)的圖象,則其解析式是()A. B.C. D.10.方程的解所在的區(qū)間是A. B.C. D.11.設a=,b=,c=,則a,b,c的大小關系是()A. B.C. D.12.計算:()A.0 B.1C.2 D.3二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.設A為圓上一動點,則A到直線的最大距離為________14.冪函數(shù),當取不同的正數(shù)時,在區(qū)間上它們的圖像是一族美麗的曲線(如圖).設點,連接,線段恰好被其中的兩個冪函數(shù)的圖像三等分,即有.那么_______15.若存在常數(shù)和,使得函數(shù)和對其公共定義域上的任意實數(shù)都滿足:和恒成立,則稱此直線為和的“隔離直線”.已知函數(shù),,若函數(shù)和之間存在隔離直線,則實數(shù)的取值范圍是______16.函數(shù)的值域為,則實數(shù)a的取值范圍是______三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.若函數(shù)f(x)滿足f(logax)=·(x-)(其中a>0且a≠1).(1)求函數(shù)f(x)的解析式,并判斷其奇偶性和單調(diào)性;(2)當x∈(-∞,2)時,f(x)-4的值恒為負數(shù),求a的取值范圍18.如圖,四棱錐中,底面為菱形,平面.(1)證明:平面平面;(2)設,,求到平面的距離.19.設全集,集合,,.(1)若,求的值;(2)若,求實數(shù)的取值范圍.20.設函數(shù)是增函數(shù),對于任意都有(1)寫一個滿足條件的;(2)證明是奇函數(shù);(3)解不等式21.如圖是函數(shù)的部分圖像,是它與軸的兩個不同交點,是之間的最高點且橫坐標為,點是線段的中點.(1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;(2)若時,函數(shù)的最小值為,求實數(shù)的值.22.已知函數(shù).(1)求函數(shù)的定義域;(2)若,求值;(3)求證:當時,

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】利用有理指數(shù)冪與對數(shù)的運算性質(zhì)分別比較,,與1和2的大小得答案【詳解】∵,且,,,∴故選C【點睛】本題考查對數(shù)值的大小比較,考查有理指數(shù)冪與對數(shù)的運算性質(zhì),尋找中間量是解題的關鍵,屬于基礎題2、D【解析】對A,B,C,利用特殊值即可判斷,對D,利用不等式的性質(zhì)即可判斷.【詳解】對A,令a=1,b=-2,此時滿足a>b,但a2<b對B,令a=1,b=-2,此時滿足a>b,但1a>1對C,若c=0,a>b,則ac=bc,故C錯;對D,∵a>b∴a-c>b-c,故D正確.故選:D.3、C【解析】由斜率的計算公式計算即可【詳解】因為直線過,兩點,所以直線的斜率為.【點睛】本題考查已知兩點坐標求直線斜率問題,屬于基礎題4、B【解析】設,則,求出的解析式,根據(jù)函數(shù)為上的奇函數(shù),即可求得時,函數(shù)的解析式,得到答案.【詳解】由題意,設,則,則,因為函數(shù)為上的奇函數(shù),則,得,即當時,.故選:B.【點睛】本題主要考查了利用函數(shù)的奇偶性求解函數(shù)的解析式,其中解答中熟記函數(shù)的奇偶性,合理計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、C【解析】根據(jù)函數(shù)的奇偶性畫出的圖象,結合的知識確定正確答案.【詳解】依題意,是定義在上的奇函數(shù),圖象關于原點對稱.當時,,結合的奇偶性,作出的大致圖象如下圖所示,根據(jù)的定義可知,選項C符合題意.故選:C6、C【解析】由解出范圍即可.【詳解】由,可得,所以函數(shù)的單調(diào)遞增區(qū)間為,故選C.7、C【解析】由或判斷;由,或相交判斷;根據(jù)線面平行與面面平行的定義判斷;由或相交,判斷.【詳解】若,,則或,不正確;若,,則,或相交,不正確;若,,可得沒有公共點,即,正確;若,,則或相交,不正確,故選C.【點睛】本題主要考查空間平行關系的性質(zhì)與判斷,屬于基礎題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.8、C【解析】依據(jù)子集的定義進行判斷即可解決二者間的邏輯關系.【詳解】若使得,則有成立;若,則有使得成立.則“使得”是“”的充要條件故選:C9、B【解析】通過函數(shù)的圖象可得到:A=3,,,則,然后再利用點在圖象上求解.,【詳解】由函數(shù)的圖象可知:A=3,,,所以,又點在圖象上,所以,即,所以,即,因為,所以所以故選:B【點睛】本題主要考查利用三角函數(shù)的圖象求解析式,還考查了運算求解的能力,屬于中檔題.10、C【解析】根據(jù)零點存在性定理判定即可.【詳解】設,,根據(jù)零點存在性定理可知方程的解所在的區(qū)間是.故選:C【點睛】本題主要考查了根據(jù)零點存在性定理判斷零點所在的區(qū)間,屬于基礎題.11、C【解析】根據(jù)指數(shù)和冪函數(shù)的單調(diào)性比較大小即可.【詳解】因為在上單調(diào)遞增,在上單調(diào)遞減所以,故.故選:C12、B【解析】根據(jù)指數(shù)對數(shù)恒等式及對數(shù)的運算法則計算可得;【詳解】解:;故選:B二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】求出圓心到直線的距離,進而可得結果.【詳解】依題意可知圓心為,半徑為1.則圓心到直線距離,則點直線的最大距離為.故答案:.14、1【解析】求出的坐標,不妨設,,分別過,,分別代入點的坐標,變形可解得結果.【詳解】因為,,,所以,,不妨設,,分別過,,則,,則,所以故答案為:115、【解析】由已知可得、恒成立,可求得實數(shù)的取值范圍.【詳解】因為函數(shù)和之間存在隔離直線,所以,當時,可得對任意的恒成立,則,即,當時,可得對恒成立,令,則有對恒成立,所以或,解得或,綜上所述,實數(shù)的取值范圍是.故答案為:.16、【解析】分,,三類,根據(jù)一次函數(shù)和二次函數(shù)的性質(zhì)可解.【詳解】當時,,易知此時函數(shù)的值域為;當時,二次函數(shù)圖象開口向下,顯然不滿足題意;當時,∵函數(shù)的值域為,∴,解得或,綜上,實數(shù)a的取值范圍是,故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)見解析.(2)[2-,1)∪(1,2+]【解析】試題分析:(1)利用換元法求函數(shù)解析式,注意換元時元的范圍,再根據(jù)奇偶性定義判斷函數(shù)奇偶性,最后根據(jù)復合函數(shù)單調(diào)性性質(zhì)判斷函數(shù)單調(diào)性(2)不等式恒成立問題一般轉(zhuǎn)化為對應函數(shù)最值問題:即f(x)最大值小于4,根據(jù)函數(shù)單調(diào)性確定函數(shù)最大值,自在解不等式可得a的取值范圍試題解析:(1)令logax=t(t∈R),則x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)為奇函數(shù)當a>1時,y=ax為增函數(shù),y=-a-x為增函數(shù),且>0,∴f(x)為增函數(shù)當0<a<1時,y=ax為減函數(shù),y=-a-x為減函數(shù),且<0,∴f(x)為增函數(shù).∴f(x)在R上為增函數(shù)(2)∵f(x)是R上的增函數(shù),∴y=f(x)-4也是R上的增函數(shù)由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒為負數(shù),只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范圍為[2-,1)∪(1,2+]點睛:不等式有解是含參數(shù)的不等式存在性問題時,只要求存在滿足條件的即可;不等式的解集為R是指不等式的恒成立,而不等式的解集的對立面(如的解集是空集,則恒成立))也是不等式的恒成立問題,此兩類問題都可轉(zhuǎn)化為最值問題,即恒成立?,恒成立?.18、(1)詳見解析(2)【解析】(1)證面面垂直可根據(jù)證線線垂直,∵為菱形,∴.∵平面,∴.∴平面.(2)可根據(jù)等體積法求解到平面的距離試題解析:(1)∵為菱形,∴.∵平面,∴.∴平面.又平面,∴平面平面.(2)∵,,∴,.∵,∴.若設到平面的距離為.∴,∴,∴.即到平面的距離為.19、(1)或;(2).【解析】(1)因為,故,從而或者,故或(舎)或.(2)計算得,故,又,所以的取值范圍是.解析:(1)∵,,,∴或,∴或或,經(jīng)驗知或.(2),,由,得,又及與集合中元素相異矛盾,所以的取值范圍是.20、(1),(2)見解析(3)【解析】(1)滿足是增函數(shù),對于任意都有的函數(shù)(2)利用函數(shù)的奇偶性的定義轉(zhuǎn)化求解即可(3)利用已知條件轉(zhuǎn)化不等式,通過函數(shù)的單調(diào)性轉(zhuǎn)化求解即可【小問1詳解】因為函數(shù)是增函數(shù),對于任意都有,這樣的函數(shù)很多,其中一種為:,證明如下:函數(shù)滿足是增函數(shù),,所以滿足題意.【小問2詳解】令,則由得,即得,故是奇函數(shù)【小問3詳解】,所以,則,因為,所以,所以,又因為函數(shù)是增函數(shù),所以,所以或.所以的解集為:.21、(1)(2)【解析】(1)由點是線段的中點,可得和的坐標,從而得最值和周期,可得和,再代入頂點坐標可得,再利用整體換元可求單調(diào)區(qū)間;(2)令得到,討論二次函數(shù)的對稱軸與區(qū)間的位置關系求最值即可.【詳解】(1)因為為中點,,所以,,則,,又因為,則所以,由又因為,則所以令又因為則單調(diào)遞增區(qū)間為.(2)因為所以令,則對稱軸為①當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論