2024屆甘肅省蘭州市高一數(shù)學第一學期期末綜合測試試題含解析_第1頁
2024屆甘肅省蘭州市高一數(shù)學第一學期期末綜合測試試題含解析_第2頁
2024屆甘肅省蘭州市高一數(shù)學第一學期期末綜合測試試題含解析_第3頁
2024屆甘肅省蘭州市高一數(shù)學第一學期期末綜合測試試題含解析_第4頁
2024屆甘肅省蘭州市高一數(shù)學第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆甘肅省蘭州市高一數(shù)學第一學期期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一半徑為2m的水輪,水輪圓心O距離水面1m;已知水輪按逆時針做勻速轉動,每3秒轉一圈,且當水輪上點P從水中浮現(xiàn)時(圖中點)開始計算時間.如圖所示,建立直角坐標系,將點P距離水面的高度h(單位:m)表示為時間t(單位:s)的函數(shù),記,則()A.0 B.1C.3 D.42.若一束光線從點射入,經(jīng)直線反射到直線上的點,再經(jīng)直線反射后經(jīng)過點,則點的坐標為()A. B.C. D.3.“”是“的最小正周期為”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.函數(shù)的減區(qū)間為()A. B.C. D.5.已知函數(shù),若(其中.),則的最小值為()A. B.C.2 D.46.命題“,”的否定為()A., B.,C., D.,7.函數(shù)()的零點所在的一個區(qū)間是()A. B.C. D.8.已知命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.9.設m、n是不同的直線,、、是不同的平面,有以下四個命題:(1)若、,則(2)若,,則(3)若、,則(4)若,,則其中真命題的序號是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)10.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.已知P為△ABC所在平面外一點,且PA,PB,PC兩兩垂直,則下列命題:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正確命題的個數(shù)是________12.函數(shù)f(x)=+的定義域為____________13.已知一組數(shù)據(jù),,…,的平均數(shù),方差,則另外一組數(shù)據(jù),,…,的平均數(shù)為______,方差為______14.已知函數(shù)則的值等于____________.15.某掛鐘秒針的端點A到中心點的距離為,秒針均勻地繞點旋轉,當時間時,點A與鐘面上標12的點重合,A與兩點距離地面的高度差與存在函數(shù)關系式,則解析式___________,其中,一圈內(nèi)A與兩點距離地面的高度差不低于的時長為___________.16.已知平面向量,的夾角為,,則=______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知(1)化簡;(2)若是第三象限角,且,求的值18.某公司結合公司的實際情況針對調(diào)休安排展開問卷調(diào)查,提出了,,三種放假方案,調(diào)查結果如下:支持方案支持方案支持方案35歲以下20408035歲以上(含35歲)101040(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.19.如圖,以Ox為始邊作角與,它們的終邊分別與單位圓相交于P,Q兩點,已知點P的坐標為(1)求的值;(2)若,求的值20.函數(shù)部分圖象如下圖所示:(1)求函數(shù)的解析式;(2)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;(3)求函數(shù)在上的值域21.已知a,b為正實數(shù),且.(1)求a2+b2的最小值;(2)若,求ab的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)題意設h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,寫出函數(shù)解析式,計算f(t)+f(t+1)+f(t+2)的值【詳解】根據(jù)題意,設h=f(t)=Asin(ωt+φ)+k,(φ<0),則A=2,k=1,因為T=3,所以ω,所以h=2sin(t+φ)+1,又因為t=0時,h=0,所以0=2sinφ+1,所以sinφ,又因為φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故選:C2、C【解析】由題可求A關于直線的對稱點為及關于直線的對稱點為,可得直線的方程,聯(lián)立直線,即得.【詳解】設A關于直線的對稱點為,則,解得,即,設關于直線的對稱點為,則,解得,即,∴直線的方程為:代入,可得,故.故選:C.3、A【解析】根據(jù)函數(shù)的最小正周期求得,再根據(jù)充分條件和必要條件的定義即可的解.【詳解】解:由的最小正周期為,可得,所以,所以“”是“的最小正周期為”的充分不必要條件.故選:A.4、D【解析】先氣的函數(shù)的定義域為,結合二次函數(shù)性質和復合函數(shù)的單調(diào)性的判定方法,即可求解.【詳解】由題意,函數(shù)有意義,則滿足,即,解得,即函數(shù)的定義域為,令,可得其開口向下,對稱軸的方程為,所以函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上單調(diào)遞減,根據(jù)復合函數(shù)的單調(diào)性,可得函數(shù)在上單調(diào)遞減,即的減區(qū)間為.故選:D.5、B【解析】根據(jù)二次函數(shù)的性質及對數(shù)的運算可得,利用均值不等式求最值即可.詳解】,由,,即,,當且僅當,即時等號成立,故選:B6、B【解析】利用含有量詞的命題的否定方法:先改變量詞,然后再否定結論,判斷即可.【詳解】解:由含有量詞的命題的否定方法:先改變量詞,然后再否定結論可得,命題“”的否定為:.故選:B.7、C【解析】將各區(qū)間的端點值代入計算并結合零點存在性定理判斷即可.【詳解】由,,,所以,根據(jù)零點存在性定理可知函數(shù)在該區(qū)間存在零點.故選:C8、D【解析】由題意可知,命題“,”是真命題,再利用一元二次不等式的解集與判別式的關系即可求出結果.【詳解】由于命題“,”是假命題,所以命題“,”是真命題;所以,解得.故選:D.【點睛】本題考查了簡易邏輯的判定、一元二次不等式的解集與判別式的關系,考查了推理能力與計算能力,屬于基礎題9、D【解析】故選D.10、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】如圖所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC?平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案為:3.12、【解析】根據(jù)題意,結合限制條件,解指數(shù)不等式,即可求解.【詳解】根據(jù)題意,由,解得且,因此定義域為.故答案為:.13、①.11②.54【解析】由平均數(shù)與方差的性質即可求解.【詳解】解:由題意,數(shù)據(jù),,…,的平均數(shù)為,方差為故答案:11,54.14、18【解析】根據(jù)分段函數(shù)定義計算【詳解】故答案為:1815、①.②.【解析】先求出經(jīng)過,秒針轉過的圓心角的為,進而表達出函數(shù)解析式,利用求出的解析式建立不等式,解出解集,得到答案.【詳解】經(jīng)過,秒針轉過的圓心角為,得.由,得,又,故,得,解得:,故一圈內(nèi)A與兩點距離地面的高度差不低于的時長為.故答案為:,16、【解析】=代入各量進行求解即可.【詳解】=,故答案.【點睛】本題考查了向量模的求解,可以通過先平方再開方即可,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用誘導公式化簡==;(2)由誘導公式可得,再利用同角三角函數(shù)關系求出即可試題解析:(1)(2)∵,∴,又第三象限角,∴,∴點睛:(1)三角函數(shù)式化簡的思路:①切化弦,統(tǒng)一名;②用誘導公式,統(tǒng)一角;③用因式分解將式子變形,化為最簡(2)解題時要熟練運用誘導公式和同角三角函數(shù)基本關系式,其中確定相應三角函數(shù)值的符號是解題的關鍵.18、(1)(2)【解析】(1)根據(jù)分層抽樣按比例抽取,列出方程,能求出n的值;(2)35歲以下有4人,35歲以上(含35歲)有1人.設將35歲以下的4人標記為1,2,3,4,35歲以上(含35歲)的1人記為a,利用列舉法能求出恰好有1人在35歲以上(含35歲)的概率.【詳解】(1)根據(jù)分層抽樣按比例抽取,得:,解得.(2)35歲以下:(人),35歲以上(含35歲):(人)設將35歲以下的4人標記為1,2,3,4,35歲以上(含35歲)的1人記為,,共10個樣本點.設:恰好有1人在35歲以上(含35歲),有4個樣本點,故.【點睛】本題考查概率的求法,分層抽樣、古典概型、列舉法等基礎知識,考查運算求解能力,屬于中檔題.19、(1)(2)【解析】(1)由三角函數(shù)的定義首先求得的值,然后結合二倍角公式和同角三角函數(shù)基本關系化簡求解三角函數(shù)式的值即可;(2)由題意首先求得的關系,然后結合誘導公式和兩角和差正余弦公式即可求得三角函數(shù)式的值.【詳解】(1)由三角函數(shù)定義得,,∴原式(2)∵,且,∴,,∴,∴【點睛】本題主要考查三角函數(shù)的定義,二倍角公式及其應用,兩角和差正余弦公式的應用等知識,意在考查學生的轉化能力和計算求解能力.20、(1);(2);;(3).【解析】(1)根據(jù)給定函數(shù)圖象依次求出,再代入作答.(2)由(1)的結論結合正弦函數(shù)的性質求解作答.(3)在的條件下,求出(1)中函數(shù)的相位范圍,再利用正弦函數(shù)的性質計算作答.【小問1詳解】觀察圖象得:,令函數(shù)周期為,則,,由得:,而,于是得,所以函數(shù)的解析式是:.【小問2詳解】由(1)知,函數(shù)的最小正周期,由解得:,所以函數(shù)的最小正周期是,單調(diào)遞減區(qū)間是.【小問3詳解】由(1)知,當時,,則當,即時,當,即時,,所以函數(shù)在上的值域是.【點睛】思路點睛:涉及求正(余)型函數(shù)在指定區(qū)間上的值域、最值問題,根據(jù)給定的自

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論