




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省汕頭潮南區(qū)四校聯(lián)考2024屆中考二模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.2.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.123.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.4.下列計算正確的是()A.a(chǎn)2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b5.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.606.定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱之為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為()A. B. C. D.7.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件8.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個9.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),如[4]=4,[]=1,[﹣2.5]=﹣3.現(xiàn)對82進行如下操作:82[]=9[]=3[]=1,這樣對82只需進行3次操作后變?yōu)?,類似地,對121只需進行多少次操作后變?yōu)?()A.1 B.2 C.3 D.410.下列說法錯誤的是()A.必然事件的概率為1B.數(shù)據(jù)1、2、2、3的平均數(shù)是2C.數(shù)據(jù)5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎11.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于()A.30° B.35° C.40° D.50°12.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.14.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側面積為_____cm1.15.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.16.反比例函數(shù)y=的圖像經(jīng)過點(2,4),則k的值等于__________.17.如圖,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,則的值等于_____18.分解因式:4a3b﹣ab=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側),與y軸交于點C.(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;(2)P(m,t)為拋物線上的一個動點.①當點P關于原點的對稱點P′落在直線BC上時,求m的值;②當點P關于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.20.(6分)如圖1,一枚質(zhì)地均勻的正六面體骰子的六個面分別標有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落在圈D;若第二次擲得2,就從圈D開始順時針連續(xù)跳2個邊長,落得圈B;…設游戲者從圈A起跳.小賢隨機擲一次骰子,求落回到圈A的概率P1.小南隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?21.(6分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.22.(8分)現(xiàn)有四張分別標有數(shù)字1、2、2、3的卡片,他們除數(shù)字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標數(shù)字不同的概率()A. B. C. D.23.(8分)某品牌手機去年每臺的售價y(元)與月份x之間滿足函數(shù)關系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數(shù)關系,其中1﹣6月份的銷售情況如下表:月份(x)1月2月3月4月5月6月銷售量(p)3.9萬臺4.0萬臺4.1萬臺4.2萬臺4.3萬臺4.4萬臺(1)求p關于x的函數(shù)關系式;(2)求該品牌手機在去年哪個月的銷售金額最大?最大是多少萬元?(3)今年1月份該品牌手機的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經(jīng)銷商決定對該手機以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機的銷售額為6400萬元,求m的值.24.(10分)如圖,⊙O的半徑為4,B為⊙O外一點,連結OB,且OB=6.過點B作⊙O的切線BD,切點為點D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為點C.(1)求證:AD平分∠BAC;(2)求AC的長.25.(10分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規(guī)律列出第5個等式:a5==;用含有n的代數(shù)式表示第n個等式:an==(n為正整數(shù));求a1+a2+a3+a4+…+a100的值.26.(12分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最小?若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.27.(12分)如圖,已知ABCD是邊長為3的正方形,點P在線段BC上,點G在線段AD上,PD=PG,DF⊥PG于點H,交AB于點F,將線段PG繞點P逆時針旋轉(zhuǎn)90°得到線段PE,連接EF.(1)求證:DF=PG;(2)若PC=1,求四邊形PEFD的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.2、C【解題分析】
設B點的坐標為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關鍵點坐標,根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【題目詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,
),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【題目點撥】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結合圖形,分析圖形面積關系是關鍵.3、C【解題分析】
由正方形的性質(zhì)知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【題目詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【題目點撥】本題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟練掌握正方形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.4、D【解題分析】
各項計算得到結果,即可作出判斷.【題目詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.【題目點撥】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.5、B【解題分析】
有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【題目詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【題目點撥】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.6、A【解題分析】分析:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù):根據(jù)題意得知這樣的兩位數(shù)共有90個;
②符合條件的情況數(shù)目:從總數(shù)中找出符合條件的數(shù)共有45個;二者的比值就是其發(fā)生的概率.詳解:兩位數(shù)共有90個,下滑數(shù)有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,
概率為.
故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.7、D【解題分析】是實數(shù),||一定大于等于0,是必然事件,故選D.8、D【解題分析】
根據(jù)拋物線的圖象與系數(shù)的關系即可求出答案.【題目詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設關于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【題目點撥】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax1+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.本題屬于中等題型.9、C【解題分析】分析:[x]表示不大于x的最大整數(shù),依據(jù)題目中提供的操作進行計算即可.詳解:121∴對121只需進行3次操作后變?yōu)?.故選C.點睛:本題是一道關于無理數(shù)的題目,需要結合定義的新運算和無理數(shù)的估算進行求解.10、D【解題分析】試題分析:A.概率值反映了事件發(fā)生的機會的大小,必然事件是一定發(fā)生的事件,所以概率為1,本項正確;B.數(shù)據(jù)1、2、2、3的平均數(shù)是1+2+2+34C.這些數(shù)據(jù)的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術平均數(shù);3.極差;4.隨機事件11、C【解題分析】分析:欲求∠B的度數(shù),需求出同弧所對的圓周角∠C的度數(shù);△APC中,已知了∠A及外角∠APD的度數(shù),即可由三角形的外角性質(zhì)求出∠C的度數(shù),由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故選C.12、D【解題分析】
根據(jù)平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【題目詳解】解:當或時,,
即或.
所以D選項是正確的.【題目點撥】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.也考查了平行線分線段成比例定理的逆定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、5【解題分析】
已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應等于AB的一半.【題目詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【題目點撥】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關鍵.14、【解題分析】分析:根據(jù)圓錐的側面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側面積的計算:圓錐的側面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).15、x1=1,x2=﹣1.【解題分析】
直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【題目詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【題目點撥】本題考查了二次函數(shù)與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質(zhì)上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.16、1【解題分析】解:∵點(2,4)在反比例函數(shù)的圖象上,∴,即k=1.故答案為1.點睛:本題考查的是反比例函數(shù)圖象上點的坐標特點,即反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式.17、【解題分析】
根據(jù)平行線分線段成比例定理解答即可.【題目詳解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案為.【題目點撥】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.18、ab(2a+1)(2a-1)【解題分析】
先提取公因式再用公式法進行因式分解即可.【題目詳解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【題目點撥】此題主要考查因式分解單項式,解題的關鍵是熟知因式分解的方法.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解題分析】
(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標,再根據(jù)函數(shù)解析式可以求得點B的坐標,進而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當P′A3取得最小值時,m的值及這個最小值.【題目詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關于原點對稱,∴P′(﹣m,﹣t),當y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設直線BC對應的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數(shù)的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.【題目點撥】本題是二次函數(shù)綜合題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.20、(1)落回到圈A的概率P1【解題分析】
(1)由共有6種等可能的結果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;
(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結果與最后落回到圈A的情況,再利用概率公式求解即可求得答案.【題目詳解】(1)∵擲一次骰子有6種等可能的結果,只有擲的4時,才會落回到圈A,∴落回到圈A的概率P1(2)列表得:1234561((((((2((((((3((((((4((((((5((((((6((((((∵共有36種等可能的結果,當兩次擲得的數(shù)字之和為4的倍數(shù),即(1,3)(2,2)(2,6∴p2∵P1∴可能性不一樣【題目點撥】本題考查了用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)k=-,b=1;(1)(0,1)和【解題分析】分析:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經(jīng)過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②如果,那么,解得,∴點的坐標是.綜上所述:符合要求的點有兩個,其坐標分別是和.(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當a=-1時,=;當a=1時,=;∴點的坐標是或.點睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)的性質(zhì)、解析式的求法以及相似三角形的性質(zhì).解答(1)問的關鍵是要分類討論,解答(3)的關鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.22、A【解題分析】分析:根據(jù)題意畫出樹狀圖,從而可以得到兩次兩次抽出的卡片所標數(shù)字不同的情況及所有等可能發(fā)生的情況,進而根據(jù)概率公式求出兩次抽出的卡片所標數(shù)字不同的概率.詳解:由題意可得,兩次抽出的卡片所標數(shù)字不同的概率是:,故選:A.點睛:本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.23、(1)p=0.1x+3.8;(2)該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3)m的值為1.【解題分析】
(1)直接利用待定系數(shù)法求一次函數(shù)解析式即可;(2)利用銷量×售價=銷售金額,進而利用二次函數(shù)最值求法求出即可;(3)分別表示出1,2月份的銷量以及售價,進而利用今年2月份這種品牌手機的銷售額為6400萬元,得出等式求出即可.【題目詳解】(1)設p=kx+b,把p=3.9,x=1;p=4.0,x=2分別代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)設該品牌手機在去年第x個月的銷售金額為w萬元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,當x=7時,w最大=10125,答:該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3)當x=12時,y=100,p=5,1月份的售價為:100(1﹣m%)元,則2月份的售價為:0.8×100(1﹣m%)元;1月份的銷量為:5×(1﹣1.5m%)萬臺,則2月份的銷量為:[5×(1﹣1.5m%)+1.5]萬臺;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=1,答:m的值為1.【題目點撥】此題主要考查了二次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,根據(jù)題意表示出2月份的銷量與售價是解題關鍵.24、(1)證明見解析;(2)AC=.【解題分析】(1)證明:連接OD.∵BD是⊙O的切線,∴OD⊥BD.∵AC⊥BD,∴OD∥AC,∴∠2=∠1.∵OA=OD.∴∠1=∠1,∴∠1=∠2,即AD平分∠BAC.(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,即.解得.25、(1)(2)(3)【解題分析】
(1)(2)觀察知,找等號后面的式子規(guī)律是關鍵:分子不變,為1;分母是兩個連續(xù)奇數(shù)的乘積,它們與式子序號之間的關系為:序號的2倍減1和序號的2倍加1.(3)運用變化規(guī)律計算【題目詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.26、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為
.【解題分析】
(1)根據(jù)勾股定理解答即可;(2)設AE=x,根據(jù)全等三角形的性質(zhì)和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質(zhì)解答即可.【題目詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質(zhì)知:Rt△FDE≌Rt△AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漢字的由來和演變
- 云南省曲靖市民族中學2024-2025學年高一上學期期中檢測化學試卷(含答案)
- 內(nèi)蒙古鄂爾多斯市西四旗2024-2025學年高一下學期7月期末考試生物試卷(含答案)
- 福建省漳州第一中學2024-2025學年高二下學期期末考試化學試題(含答案)
- 年眼科護士工作總結
- 虛擬現(xiàn)實技術在娛樂產(chǎn)業(yè)的運用
- 餐飲連鎖經(jīng)營模式成功案例分享
- 2025年橋梁維護養(yǎng)護合同
- 2025餐館股份轉(zhuǎn)讓協(xié)議合同樣本
- 永順縣應急知識培訓課件學校
- 教師副高職稱答辯題庫【3篇】
- 一只窩囊的大老虎第二課時
- 房屋建筑工程監(jiān)理規(guī)劃(范本-附帶監(jiān)理細則內(nèi)容)
- 公司境外傭金業(yè)務管理辦法
- 規(guī)章制度編寫格式規(guī)范
- 屏幕尺寸換算表
- 金屬技術監(jiān)督管理制度
- 建筑行業(yè)材料員培訓課件
- 佐賀的超級阿嬤親子閱讀單
- 企業(yè)工會制度大全
- NB-T 10316-2019 風電場動態(tài)無功補償裝置并網(wǎng)性能測試規(guī)范
評論
0/150
提交評論